提交 22dcd97f 编写于 作者: Y yaoxuefeng

add nfm in rank and clean unused codes and files

上级 59367805
...@@ -156,8 +156,3 @@ class Model(ModelBase): ...@@ -156,8 +156,3 @@ class Model(ModelBase):
l2_reg_cross_loss = self.l2_reg_cross * l2_reg_cross_loss l2_reg_cross_loss = self.l2_reg_cross * l2_reg_cross_loss
self.loss = self.avg_logloss + l2_reg_cross_loss self.loss = self.avg_logloss + l2_reg_cross_loss
self._cost = self.loss self._cost = self.loss
#def optimizer(self):
#
# optimizer = fluid.optimizer.Adam(self.learning_rate, lazy_mode=True)
# return optimizer
...@@ -28,7 +28,7 @@ if __name__ == '__main__': ...@@ -28,7 +28,7 @@ if __name__ == '__main__':
print("download and extract starting...") print("download and extract starting...")
download_file_and_uncompress(url) download_file_and_uncompress(url)
download_file(url2, "./aid_data/feat_dict_10.pkl2", True) download_file(url2, "./sample_data/feat_dict_10.pkl2", True)
print("download and extract finished") print("download and extract finished")
print("preprocessing...") print("preprocessing...")
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# global settings
debug: false
workspace: "paddlerec.models.rank.nfm"
dataset:
- name: train_sample
type: QueueDataset
batch_size: 5
data_path: "{workspace}/data/sample_data/train"
sparse_slots: "label feat_idx"
dense_slots: "feat_value:39"
- name: infer_sample
type: QueueDataset
batch_size: 5
data_path: "{workspace}/data/sample_data/train"
sparse_slots: "label feat_idx"
dense_slots: "feat_value:39"
hyper_parameters:
# 用户自定义配置
optimizer:
class: Adam
learning_rate: 0.0001
sparse_feature_number: 1086460
sparse_feature_dim: 9
is_sparse: False
use_batchnorm: False
use_dropout: False
dropout_prob: 0.9
fc_sizes: [400, 400, 400]
loss_type: "log_loss" # log_loss or square_loss
reg: 0.001
num_field: 39
act: "relu"
mode: train_runner
# if infer, change mode to "infer_runner" and change phase to "infer_phase"
runner:
- name: train_runner
trainer_class: single_train
epochs: 1
device: cpu
init_model_path: ""
save_checkpoint_interval: 1
save_inference_interval: 1
save_checkpoint_path: "increment"
save_inference_path: "inference"
print_interval: 1
- name: infer_runner
trainer_class: single_infer
epochs: 1
device: cpu
init_model_path: "increment/0"
print_interval: 1
phase:
- name: phase1
model: "{workspace}/model.py"
dataset_name: train_sample
thread_num: 1
#- name: infer_phase
# model: "{workspace}/model.py"
# dataset_name: infer_sample
# thread_num: 1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
import io
LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
TOOLS_PATH = os.path.join(LOCAL_PATH, "..", "..", "tools")
sys.path.append(TOOLS_PATH)
from paddlerec.tools.tools import download_file_and_uncompress
if __name__ == '__main__':
trainfile = 'train.txt'
url = "https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz"
print("download and extract starting...")
download_file_and_uncompress(url)
print("download and extract finished")
count = 0
for _ in io.open(trainfile, 'r', encoding='utf-8'):
count += 1
print("total records: %d" % count)
print("done")
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import shutil
import sys
LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
TOOLS_PATH = os.path.join(LOCAL_PATH, "..", "..", "tools")
sys.path.append(TOOLS_PATH)
from paddlerec.tools.tools import download_file_and_uncompress, download_file
if __name__ == '__main__':
url = "https://s3-eu-west-1.amazonaws.com/kaggle-display-advertising-challenge-dataset/dac.tar.gz"
url2 = "https://paddlerec.bj.bcebos.com/deepfm%2Ffeat_dict_10.pkl2"
print("download and extract starting...")
download_file_and_uncompress(url)
download_file(url2, "./sample_data/feat_dict_10.pkl2", True)
print("download and extract finished")
print("preprocessing...")
os.system("python preprocess.py")
print("preprocess done")
shutil.rmtree("raw_data")
print("done")
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import yaml, os
from paddlerec.core.reader import Reader
from paddlerec.core.utils import envs
import paddle.fluid.incubate.data_generator as dg
try:
import cPickle as pickle
except ImportError:
import pickle
class TrainReader(dg.MultiSlotDataGenerator):
def __init__(self, config):
dg.MultiSlotDataGenerator.__init__(self)
if os.path.isfile(config):
with open(config, 'r') as rb:
_config = yaml.load(rb.read(), Loader=yaml.FullLoader)
else:
raise ValueError("reader config only support yaml")
def init(self):
self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
self.cont_max_ = [
5775, 257675, 65535, 969, 23159456, 431037, 56311, 6047, 29019, 46,
231, 4008, 7393
]
self.cont_diff_ = [
self.cont_max_[i] - self.cont_min_[i]
for i in range(len(self.cont_min_))
]
self.continuous_range_ = range(1, 14)
self.categorical_range_ = range(14, 40)
# load preprocessed feature dict
self.feat_dict_name = "sample_data/feat_dict_10.pkl2"
self.feat_dict_ = pickle.load(open(self.feat_dict_name, 'rb'))
def _process_line(self, line):
features = line.rstrip('\n').split('\t')
feat_idx = []
feat_value = []
for idx in self.continuous_range_:
if features[idx] == '':
feat_idx.append(0)
feat_value.append(0.0)
else:
feat_idx.append(self.feat_dict_[idx])
feat_value.append(
(float(features[idx]) - self.cont_min_[idx - 1]) /
self.cont_diff_[idx - 1])
for idx in self.categorical_range_:
if features[idx] == '' or features[idx] not in self.feat_dict_:
feat_idx.append(0)
feat_value.append(0.0)
else:
feat_idx.append(self.feat_dict_[features[idx]])
feat_value.append(1.0)
label = [int(features[0])]
return feat_idx, feat_value, label
def generate_sample(self, line):
"""
Read the data line by line and process it as a dictionary
"""
def data_iter():
feat_idx, feat_value, label = self._process_line(line)
s = ""
for i in [('feat_idx', feat_idx), ('feat_value', feat_value),
('label', label)]:
k = i[0]
v = i[1]
for j in v:
s += " " + k + ":" + str(j)
print s.strip()
yield None
return data_iter
reader = TrainReader("../config.yaml")
reader.init()
reader.run_from_stdin()
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy
from collections import Counter
import shutil
import pickle
def get_raw_data():
if not os.path.isdir('raw_data'):
os.mkdir('raw_data')
fin = open('train.txt', 'r')
fout = open('raw_data/part-0', 'w')
for line_idx, line in enumerate(fin):
if line_idx % 200000 == 0 and line_idx != 0:
fout.close()
cur_part_idx = int(line_idx / 200000)
fout = open('raw_data/part-' + str(cur_part_idx), 'w')
fout.write(line)
fout.close()
fin.close()
def split_data():
split_rate_ = 0.9
dir_train_file_idx_ = 'aid_data/train_file_idx.txt'
filelist_ = [
'raw_data/part-%d' % x for x in range(len(os.listdir('raw_data')))
]
if not os.path.exists(dir_train_file_idx_):
train_file_idx = list(
numpy.random.choice(
len(filelist_), int(len(filelist_) * split_rate_), False))
with open(dir_train_file_idx_, 'w') as fout:
fout.write(str(train_file_idx))
else:
with open(dir_train_file_idx_, 'r') as fin:
train_file_idx = eval(fin.read())
for idx in range(len(filelist_)):
if idx in train_file_idx:
shutil.move(filelist_[idx], 'train_data')
else:
shutil.move(filelist_[idx], 'test_data')
def get_feat_dict():
freq_ = 10
dir_feat_dict_ = 'aid_data/feat_dict_' + str(freq_) + '.pkl2'
continuous_range_ = range(1, 14)
categorical_range_ = range(14, 40)
if not os.path.exists(dir_feat_dict_):
# print('generate a feature dict')
# Count the number of occurrences of discrete features
feat_cnt = Counter()
with open('train.txt', 'r') as fin:
for line_idx, line in enumerate(fin):
if line_idx % 100000 == 0:
print('generating feature dict', line_idx / 45000000)
features = line.rstrip('\n').split('\t')
for idx in categorical_range_:
if features[idx] == '': continue
feat_cnt.update([features[idx]])
# Only retain discrete features with high frequency
dis_feat_set = set()
for feat, ot in feat_cnt.items():
if ot >= freq_:
dis_feat_set.add(feat)
# Create a dictionary for continuous and discrete features
feat_dict = {}
tc = 1
# Continuous features
for idx in continuous_range_:
feat_dict[idx] = tc
tc += 1
for feat in dis_feat_set:
feat_dict[feat] = tc
tc += 1
# Save dictionary
with open(dir_feat_dict_, 'wb') as fout:
pickle.dump(feat_dict, fout, protocol=2)
print('args.num_feat ', len(feat_dict) + 1)
if __name__ == '__main__':
if not os.path.isdir('train_data'):
os.mkdir('train_data')
if not os.path.isdir('test_data'):
os.mkdir('test_data')
if not os.path.isdir('aid_data'):
os.mkdir('aid_data')
get_raw_data()
split_data()
get_feat_dict()
print('Done!')
python download_preprocess.py
mkdir slot_train_data
for i in `ls ./train_data`
do
cat train_data/$i | python get_slot_data.py > slot_train_data/$i
done
mkdir slot_test_data
for i in `ls ./test_data`
do
cat test_data/$i | python get_slot_data.py > slot_test_data/$i
done
此差异已折叠。
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from collections import OrderedDict
import paddle.fluid as fluid
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
class Model(ModelBase):
def __init__(self, config):
ModelBase.__init__(self, config)
def _init_hyper_parameters(self):
self.is_distributed = True if envs.get_trainer(
) == "CtrTrainer" else False
self.sparse_feature_number = envs.get_global_env(
"hyper_parameters.sparse_feature_number", None)
self.sparse_feature_dim = envs.get_global_env(
"hyper_parameters.sparse_feature_dim", None)
self.is_sparse = envs.get_global_env("hyper_parameters.is_sparse",
False)
self.use_batchnorm = envs.get_global_env(
"hyper_parameters.use_batchnorm", False)
self.use_dropout = envs.get_global_env("hyper_parameters.use_dropout",
False)
self.dropout_prob = envs.get_global_env(
"hyper_parameters.dropout_prob", None)
self.layer_sizes = envs.get_global_env("hyper_parameters.fc_sizes",
None)
self.loss_type = envs.get_global_env("hyper_parameters.loss_type",
'logloss')
self.reg = envs.get_global_env("hyper_parameters.reg", 1e-4)
self.num_field = envs.get_global_env("hyper_parameters.num_field",
None)
self.act = envs.get_global_env("hyper_parameters.act", None)
def net(self, inputs, is_infer=False):
raw_feat_idx = self._sparse_data_var[1] # (batch_size * num_field) * 1
raw_feat_value = self._dense_data_var[0] # batch_size * num_field
self.label = self._sparse_data_var[0] # batch_size * 1
init_value_ = 0.1
feat_idx = raw_feat_idx
feat_value = fluid.layers.reshape(
raw_feat_value,
[-1, self.num_field, 1]) # batch_size * num_field * 1
# ------------------------- first order term --------------------------
first_weights_re = fluid.embedding(
input=feat_idx,
is_sparse=self.is_sparse,
is_distributed=self.is_distributed,
dtype='float32',
size=[self.sparse_feature_number + 1, 1],
padding_idx=0,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=init_value_),
regularizer=fluid.regularizer.L1DecayRegularizer(self.reg))
) # (batch_size * num_field) * 1 * 1(embedding_size)
first_weights = fluid.layers.reshape(
first_weights_re,
shape=[-1, self.num_field, 1]) # batch_size * num_field * 1
y_first_order = fluid.layers.reduce_sum((first_weights * feat_value),
1) # batch_size * 1
# ------------------------- second order term --------------------------
feat_embeddings_re = fluid.embedding(
input=feat_idx,
is_sparse=self.is_sparse,
is_distributed=self.is_distributed,
dtype='float32',
size=[self.sparse_feature_number + 1, self.sparse_feature_dim],
padding_idx=0,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0,
scale=init_value_ /
math.sqrt(float(self.sparse_feature_dim))))
) # (batch_size * num_field) * 1 * embedding_size
feat_embeddings = fluid.layers.reshape(
feat_embeddings_re,
shape=[-1, self.num_field, self.sparse_feature_dim
]) # batch_size * num_field * embedding_size
feat_embeddings = feat_embeddings * feat_value # batch_size * num_field * embedding_size
# sum_square part
summed_features_emb = fluid.layers.reduce_sum(
feat_embeddings, 1) # batch_size * embedding_size
summed_features_emb_square = fluid.layers.square(
summed_features_emb) # batch_size * embedding_size
# square_sum part
squared_features_emb = fluid.layers.square(
feat_embeddings) # batch_size * num_field * embedding_size
squared_sum_features_emb = fluid.layers.reduce_sum(
squared_features_emb, 1) # batch_size * embedding_size
y_FM = 0.5 * (summed_features_emb_square - squared_sum_features_emb
) # batch_size * embedding_size
if self.use_batchnorm:
y_FM = fluid.layers.batch_norm(input=y_FM, is_test=is_infer)
if self.use_dropout:
y_FM = fluid.layers.dropout(
x=y_FM, dropout_prob=self.dropout_prob, is_test=is_infer)
# ------------------------- DNN --------------------------
y_dnn = y_FM
for s in self.layer_sizes:
if self.use_batchnorm:
y_dnn = fluid.layers.fc(
input=y_dnn,
size=s,
act=self.act,
param_attr=fluid.ParamAttr(initializer=fluid.initializer.
TruncatedNormalInitializer(
loc=0.0,
scale=init_value_ /
math.sqrt(float(10)))),
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.
TruncatedNormalInitializer(
loc=0.0, scale=init_value_)))
y_dnn = fluid.layers.batch_norm(
input=y_dnn, act=self.act, is_test=is_infer)
else:
y_dnn = fluid.layers.fc(
input=y_dnn,
size=s,
act=self.act,
param_attr=fluid.ParamAttr(initializer=fluid.initializer.
TruncatedNormalInitializer(
loc=0.0,
scale=init_value_ /
math.sqrt(float(10)))),
bias_attr=fluid.ParamAttr(initializer=fluid.initializer.
TruncatedNormalInitializer(
loc=0.0, scale=init_value_)))
if self.use_dropout:
y_dnn = fluid.layers.dropout(
x=y_dnn, dropout_prob=self.dropout_prob, is_test=is_infer)
y_dnn = fluid.layers.fc(
input=y_dnn,
size=1,
act=None,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=init_value_)),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.TruncatedNormalInitializer(
loc=0.0, scale=init_value_)))
# ------------------------- Predict --------------------------
self.predict = fluid.layers.sigmoid(y_first_order + y_dnn)
if self.loss_type == "squqre_loss":
cost = fluid.layers.mse_loss(
input=self.predict,
label=fluid.layers.cast(self.label, "float32"))
else:
cost = fluid.layers.log_loss(
input=self.predict,
label=fluid.layers.cast(self.label,
"float32")) # default log_loss
avg_cost = fluid.layers.reduce_sum(cost)
self._cost = avg_cost
predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
label_int = fluid.layers.cast(self.label, 'int64')
auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
label=label_int,
slide_steps=0)
self._metrics["AUC"] = auc_var
self._metrics["BATCH_AUC"] = batch_auc_var
if is_infer:
self._infer_results["AUC"] = auc_var
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册