Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
182e4f31
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
182e4f31
编写于
9月 22, 2020
作者:
C
Chengmo
提交者:
GitHub
9月 22, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add gen_tree (#214)
Co-authored-by:
N
wuzhihua
<
35824027+fuyinno4@users.noreply.github.com
>
上级
98c94981
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
957 addition
and
38 deletion
+957
-38
models/treebased/tdm/README.md
models/treebased/tdm/README.md
+1
-0
models/treebased/tdm/build_tree.md
models/treebased/tdm/build_tree.md
+0
-19
models/treebased/tdm/config.yaml
models/treebased/tdm/config.yaml
+9
-19
models/treebased/tdm/gen_tree/README.md
models/treebased/tdm/gen_tree/README.md
+120
-0
models/treebased/tdm/gen_tree/__init__.py
models/treebased/tdm/gen_tree/__init__.py
+17
-0
models/treebased/tdm/gen_tree/cluster.py
models/treebased/tdm/gen_tree/cluster.py
+311
-0
models/treebased/tdm/gen_tree/emb_util.py
models/treebased/tdm/gen_tree/emb_util.py
+73
-0
models/treebased/tdm/gen_tree/gen_tree.py
models/treebased/tdm/gen_tree/gen_tree.py
+52
-0
models/treebased/tdm/gen_tree/tree_builder.py
models/treebased/tdm/gen_tree/tree_builder.py
+46
-0
models/treebased/tdm/gen_tree/tree_impl.py
models/treebased/tdm/gen_tree/tree_impl.py
+122
-0
models/treebased/tdm/gen_tree/tree_search_util.py
models/treebased/tdm/gen_tree/tree_search_util.py
+206
-0
未找到文件。
models/treebased/tdm/README.md
浏览文件 @
182e4f31
...
...
@@ -13,6 +13,7 @@ cd paddle-rec
python
-m
paddlerec.run
-m
models/treebased/tdm/config.yaml
```
3.
建树及自定义训练的细节可以查阅
[
TDM-Demo建树及训练
](
./gen_tree/README.md
)
## 树结构的准备
### 名词概念
...
...
models/treebased/tdm/build_tree.md
已删除
100644 → 0
浏览文件 @
98c94981
wget https://paddlerec.bj.bcebos.com/utils/tree_build_utils.tar.gz --no-check-certificate
# input_path: embedding的路径
# emb_shape: embedding中key-value,value的维度
# emb格式要求: embedding_id(int64),embedding(float),embedding(float),......,embedding(float)
# cluster_threads: 建树聚类所用线程
python_172_anytree/bin/python -u main.py --input_path=./gen_emb/item_emb.txt --output_path=./ --emb_shape=24 --cluster_threads=4
建树流程是:1、读取emb -> 2、kmeans聚类 -> 3、聚类结果整理为树 -> 4、基于树结构得到模型所需的4个文件
1 Layer_list:记录了每一层都有哪些节点。训练用
2 Travel_list:记录每个叶子节点的Travel路径。训练用
3 Tree_Info:记录了每个节点的信息,主要为:是否是item/item_id,所在层级,父节点,子节点。检索用
4 Tree_Embedding:记录所有节点的Embedding。训练及检索用
注意一下训练数据输入的item是建树之前用的item id,还是基于树的node id,还是基于叶子的leaf id,在tdm_reader.py中,可以加载字典,做映射。
用厂内版建树得到的输出文件夹里,有名为id2nodeid.txt的映射文件,格式是『hash值』+ 『树节点ID』+『叶子节点ID(表示第几个叶子节点,tdm_sampler op 所需的输入)』
在另一个id2bidword.txt中,也有映射关系,格式是『hash值』+『原始item ID』,这个文件中仅存储了叶子节点的信息。
models/treebased/tdm/config.yaml
浏览文件 @
182e4f31
...
...
@@ -59,49 +59,39 @@ hyper_parameters:
tree_emb_path
:
"
{workspace}/tree/tree_emb.npy"
# select runner by name
mode
:
runner1
# config of each runner.
# runner is a kind of paddle training class, which wraps the train/infer process.
mode
:
[
runner1
]
runner
:
-
name
:
runner1
class
:
train
startup_class_path
:
"
{workspace}/tdm_startup.py"
# num of epochs
epochs
:
10
# device to run training or infer
device
:
cpu
save_checkpoint_interval
:
2
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
"
# load model path
print_interval
:
10
phases
:
[
phase1
]
-
name
:
runner2
class
:
infer
startup_class_path
:
"
{workspace}/tdm_startup.py"
# device to run training or infer
device
:
cpu
init_model_path
:
"
increment/0"
# load model path
print_interval
:
1
phases
:
[
phase2
]
-
name
:
runner3
class
:
local_cluster_train
startup_class_path
:
"
{workspace}/tdm_startup.py"
fleet_mode
:
ps
epochs
:
10
# device to run training or infer
device
:
cpu
save_checkpoint_interval
:
2
# save model interval of epochs
save_inference_interval
:
4
# save inference
save_checkpoint_path
:
"
increment"
# save checkpoint path
save_inference_path
:
"
inference"
# save inference path
save_inference_feed_varnames
:
[]
# feed vars of save inference
save_inference_fetch_varnames
:
[]
# fetch vars of save inference
init_model_path
:
"
init_model"
# load model path
print_interval
:
10
phases
:
[
phase1
]
# runner will run all the phase in each epoch
phase
:
...
...
@@ -109,7 +99,7 @@ phase:
model
:
"
{workspace}/model.py"
# user-defined model
dataset_name
:
dataset_train
# select dataset by name
thread_num
:
1
#
- name: phase2
#
model: "{workspace}/model.py"
#
dataset_name: dataset_infer
#
thread_num: 2
-
name
:
phase2
model
:
"
{workspace}/model.py"
dataset_name
:
dataset_infer
thread_num
:
2
models/treebased/tdm/gen_tree/README.md
0 → 100644
浏览文件 @
182e4f31
# TDM-Demo建树及训练
## 建树所需环境
Requirements:
-
python >= 2.7
-
paddlepaddle >= 1.7.2(建议1.7.2)
-
paddle-rec (克隆github paddlerec,执行python setup.py install)
-
sklearn
-
anytree
## 建树流程
### 生成建树所需Embedding
-
生成Fake的emb
```
shell
cd
gen_tree
python
-u
emb_util.py
```
生成的emb维度是[13, 64],含义是共有13个item,每个item的embedding维度是64,生成的item_emb位于
`gen_tree/item_emb.txt`
格式为
`emb_value_0(float) 空格 emb_value_1(float) ... emb_value_63(float) \t item_id `
在demo中,要求item的编号从0开始,范围 [0, item_nums-1]
真实场景可以通过各种hash映射满足该要求
### 对Item_embedding进行聚类建树
执行
```
shell
cd
gen_tree
# emd_path: item_emb的地址
# emb_size: item_emb的第二个维度,即每个item的emb的size(示例中为64)
# threads: 多线程建树配置的线程数
# n_clusters: 最终建树为几叉树,此处设置为2叉树
python gen_tree.py
--emd_path
item_emb.txt
--emb_size
64
--output_dir
./output
--threads
1
--n_clusters
2
```
生成的训练所需树结构文件位于
`gen_tree/output`
```
shell
.
├── id2item.json
# 树节点id到item id的映射表
├── layer_list.txt
# 树的每个层级都有哪些节点
├── travel_list.npy
# 每个item从根到叶子的遍历路径,按item顺序排序
├── travel_list.txt
# 上个文件的明文txt
├── tree_embedding.txt
# 所有节点按节点id排列组成的embedding
├── tree_emb.npy
# 上个文件的.npy版本
├── tree_info.npy
# 每个节点:是否对应item/父/层级/子节点,按节点顺序排列
├── tree_info.txt
# 上个文件的明文txt
└── tree.pkl
# 聚类得到的树结构
```
我们最终需要使用建树生成的以下四个文件,参与网络训练,参考
`models/treebased/tdm/config.yaml`
1.
layer_list.txt
2.
travel_list.npy
3.
tree_info.npy
4.
tree_emb.npy
### 执行训练
-
更改
`config.yaml`
中的配置
首先更改
```
yaml
hyper_parameters
:
# ...
tree
:
# 单机训练建议tree只load一次,保存为paddle tensor,之后从paddle模型热启
# 分布式训练trainer需要独立load
# 预测时也改为从paddle模型加载
load_tree_from_numpy
:
True
# only once
load_paddle_model
:
False
# train & infer need, after load from npy, change it to True
tree_layer_path
:
"
{workspace}/tree/layer_list.txt"
tree_travel_path
:
"
{workspace}/tree/travel_list.npy"
tree_info_path
:
"
{workspace}/tree/tree_info.npy"
tree_emb_path
:
"
{workspace}/tree/tree_emb.npy"
```
将上述几个path改为建树得到的文件所在的地址
再更改
```
yaml
hyper_parameters
:
max_layers
:
4
# 不含根节点,树的层数
node_nums
:
26
# 树共有多少个节点,数量与tree_info文件的行数相等
leaf_node_nums
:
13
# 树共有多少个叶子节点
layer_node_num_list
:
[
2
,
4
,
8
,
10
]
# 树的每层有多少个节点
child_nums
:
2
# 每个节点最多有几个孩子结点(几叉树)
neg_sampling_list
:
[
1
,
2
,
3
,
4
]
# 在树的每层做多少负采样,训练自定义的参数
```
若并不知道对上面几个参数具体值,可以试运行一下,paddlerec读取建树生成的文件后,会将具体信息打印到屏幕上,如下所示:
```
shell
...
File_list:
[
'models/treebased/tdm/data/train/demo_fake_input.txt'
]
2020-09-10 15:17:19,259 - INFO - Run TDM Trainer Startup Pass
2020-09-10 15:17:19,283 - INFO - load tree from numpy
2020-09-10 15:17:19,284 - INFO - TDM Tree leaf node nums: 13
2020-09-10 15:17:19,284 - INFO - TDM Tree max layer: 4
2020-09-10 15:17:19,284 - INFO - TDM Tree layer_node_num_list:
[
2, 4, 8, 10]
2020-09-10 15:17:19,285 - INFO - Begin Save Init model.
2020-09-10 15:17:19,394 - INFO - End Save Init model.
Running SingleRunner.
...
```
将其抄到配置中即可
-
训练
执行
```
cd /PaddleRec # PaddleRec 克隆的根目录
python -m paddlerec.run -m models/treebased/tdm/config.yaml
```
models/treebased/tdm/gen_tree/__init__.py
0 → 100644
浏览文件 @
182e4f31
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
.
import
cluster
__all__
=
[]
__all__
+=
cluster
.
__all__
models/treebased/tdm/gen_tree/cluster.py
0 → 100644
浏览文件 @
182e4f31
# Copyright (C) 2016-2018 Alibaba Group Holding Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
codecs
import
os
import
time
import
collections
import
argparse
import
multiprocessing
as
mp
import
numpy
as
np
from
sklearn.cluster
import
KMeans
import
tree_builder
__all__
=
[
'Cluster'
]
class
Cluster
:
def
__init__
(
self
,
filename
,
emb_size
,
id_offset
=
None
,
parall
=
16
,
prev_result
=
None
,
output_dir
=
'./'
,
_n_clusters
=
2
):
self
.
filename
=
filename
self
.
emb_size
=
emb_size
self
.
mini_batch
=
256
self
.
ids
=
None
self
.
data
=
None
self
.
items
=
None
self
.
parall
=
parall
self
.
queue
=
None
self
.
timeout
=
5
self
.
id_offset
=
id_offset
self
.
codes
=
None
self
.
prev_result
=
prev_result
self
.
output_dir
=
output_dir
self
.
n_clusters
=
_n_clusters
def
_read
(
self
):
t1
=
time
.
time
()
ids
=
list
()
data
=
list
()
items
=
list
()
count
=
0
with
codecs
.
open
(
self
.
filename
,
'r'
,
encoding
=
'utf-8'
)
as
f
:
for
line
in
f
:
arr
=
line
.
rstrip
().
split
(
'
\t
'
)
if
not
arr
:
break
elif
len
(
arr
)
==
1
:
label
=
arr
[
0
]
emb_vec
=
(
np
.
random
.
random_sample
(
(
self
.
emb_size
,
))).
tolist
()
elif
len
(
arr
)
==
2
:
label
=
arr
[
1
]
emb_vec
=
arr
[
0
].
split
()
if
len
(
emb_vec
)
!=
self
.
emb_size
:
continue
if
label
in
items
:
index
=
items
.
index
(
label
)
for
i
in
range
(
0
,
len
(
emb_vec
)):
data
[
index
][
i
+
1
]
+=
float
(
emb_vec
[
i
])
data
[
index
][
0
]
+=
1
else
:
items
.
append
(
label
)
ids
.
append
(
count
)
count
+=
1
vector
=
list
()
vector
.
append
(
1
)
for
i
in
range
(
0
,
len
(
emb_vec
)):
vector
.
append
(
float
(
emb_vec
[
i
]))
data
.
append
(
vector
)
for
i
in
range
(
len
(
data
)):
data_len
=
len
(
data
[
0
])
for
j
in
range
(
1
,
data_len
):
data
[
i
][
j
]
/=
data
[
i
][
0
]
data
[
i
]
=
data
[
i
][
1
:]
self
.
ids
=
np
.
array
(
ids
)
self
.
data
=
np
.
array
(
data
)
self
.
items
=
np
.
array
(
items
)
t2
=
time
.
time
()
print
(
"Read data done, {} records read, elapsed: {}"
.
format
(
len
(
ids
),
t2
-
t1
))
def
train
(
self
):
''' Cluster data '''
self
.
_read
()
queue
=
mp
.
Queue
()
self
.
process_prev_result
(
queue
)
processes
=
[]
pipes
=
[]
for
_
in
range
(
self
.
parall
):
a
,
b
=
mp
.
Pipe
()
p
=
mp
.
Process
(
target
=
self
.
_train
,
args
=
(
b
,
queue
))
processes
.
append
(
p
)
pipes
.
append
(
a
)
p
.
start
()
self
.
codes
=
np
.
zeros
((
len
(
self
.
ids
),
),
dtype
=
np
.
int64
)
for
pipe
in
pipes
:
codes
=
pipe
.
recv
()
for
i
in
range
(
len
(
codes
)):
if
codes
[
i
]
>
0
:
self
.
codes
[
i
]
=
codes
[
i
]
for
p
in
processes
:
p
.
join
()
assert
(
queue
.
empty
())
builder
=
tree_builder
.
TreeBuilder
(
self
.
output_dir
,
self
.
n_clusters
)
builder
.
build
(
self
.
ids
,
self
.
codes
,
items
=
self
.
items
,
data
=
self
.
data
)
def
process_prev_result
(
self
,
queue
):
if
not
self
.
prev_result
:
queue
.
put
((
0
,
np
.
array
(
range
(
len
(
self
.
ids
)))))
return
True
di
=
dict
()
for
i
,
node_id
in
enumerate
(
self
.
ids
):
di
[
node_id
]
=
i
indexes
=
[]
clusters
=
[]
with
open
(
self
.
prev_result
)
as
f
:
for
line
in
f
:
arr
=
line
.
split
(
","
)
if
arr
<
2
:
break
ni
=
[
di
[
int
(
m
)]
for
m
in
arr
]
clusters
.
append
(
ni
)
indexes
+=
ni
assert
len
(
set
(
indexes
))
==
len
(
self
.
ids
),
\
"ids count: {}, index count: {}"
.
format
(
len
(
self
.
ids
),
len
(
set
(
indexes
)))
count
=
len
(
clusters
)
assert
(
count
&
(
count
-
1
))
==
0
,
\
"Prev cluster count: {}"
.
format
(
count
)
for
i
,
ni
in
enumerate
(
clusters
):
queue
.
put
((
i
+
count
-
1
,
np
.
array
(
ni
)))
return
True
def
_train
(
self
,
pipe
,
queue
):
last_size
=
-
1
catch_time
=
0
processed
=
False
code
=
np
.
zeros
((
len
(
self
.
ids
),
),
dtype
=
np
.
int64
)
while
True
:
for
_
in
range
(
3
):
try
:
pcode
,
index
=
queue
.
get
(
timeout
=
self
.
timeout
)
except
:
index
=
None
if
index
is
not
None
:
break
if
index
is
None
:
if
processed
and
(
last_size
<=
self
.
mini_batch
or
catch_time
>=
3
):
print
(
"Process {} exits"
.
format
(
os
.
getpid
()))
break
else
:
print
(
"Got empty job, pid: {}, time: {}"
.
format
(
os
.
getpid
(
),
catch_time
))
catch_time
+=
1
continue
processed
=
True
catch_time
=
0
last_size
=
len
(
index
)
if
last_size
<=
self
.
mini_batch
:
self
.
_minbatch
(
pcode
,
index
,
code
)
else
:
start
=
time
.
time
()
sub_index
=
self
.
_cluster
(
index
)
if
last_size
>
self
.
mini_batch
:
print
(
"Train iteration done, pcode:{}, "
"data size: {}, elapsed time: {}"
.
format
(
pcode
,
len
(
index
),
time
.
time
()
-
start
))
self
.
timeout
=
int
(
0.4
*
self
.
timeout
+
0.6
*
(
time
.
time
()
-
start
))
if
self
.
timeout
<
5
:
self
.
timeout
=
5
for
i
in
range
(
self
.
n_clusters
):
if
len
(
sub_index
[
i
])
>
1
:
queue
.
put
(
(
self
.
n_clusters
*
pcode
+
i
+
1
,
sub_index
[
i
]))
process_count
=
0
for
c
in
code
:
if
c
>
0
:
process_count
+=
1
print
(
"Process {} process {} items"
.
format
(
os
.
getpid
(),
process_count
))
pipe
.
send
(
code
)
def
_minbatch
(
self
,
pcode
,
index
,
code
):
dq
=
collections
.
deque
()
dq
.
append
((
pcode
,
index
))
batch_size
=
len
(
index
)
tstart
=
time
.
time
()
while
dq
:
pcode
,
index
=
dq
.
popleft
()
if
len
(
index
)
<=
self
.
n_clusters
:
for
i
in
range
(
len
(
index
)):
code
[
index
[
i
]]
=
self
.
n_clusters
*
pcode
+
i
+
1
continue
sub_index
=
self
.
_cluster
(
index
)
for
i
in
range
(
self
.
n_clusters
):
if
len
(
sub_index
[
i
])
>
1
:
dq
.
append
((
self
.
n_clusters
*
pcode
+
i
+
1
,
sub_index
[
i
]))
elif
len
(
sub_index
[
i
])
>
0
:
for
j
in
range
(
len
(
sub_index
[
i
])):
code
[
sub_index
[
i
][
j
]]
=
self
.
n_clusters
*
\
pcode
+
i
+
j
+
1
print
(
"Minbatch, batch size: {}, elapsed: {}"
.
format
(
batch_size
,
time
.
time
()
-
tstart
))
def
_cluster
(
self
,
index
):
data
=
self
.
data
[
index
]
kmeans
=
KMeans
(
n_clusters
=
self
.
n_clusters
,
random_state
=
0
).
fit
(
data
)
labels
=
kmeans
.
labels_
sub_indexes
=
[]
remain_index
=
[]
ave_num
=
len
(
index
)
/
self
.
n_clusters
for
i
in
range
(
self
.
n_clusters
):
sub_i
=
np
.
where
(
labels
==
i
)[
0
]
sub_index
=
index
[
sub_i
]
if
len
(
sub_index
)
<=
ave_num
:
sub_indexes
.
append
(
sub_index
)
else
:
distances
=
kmeans
.
transform
(
data
[
sub_i
])[:,
i
]
sorted_index
=
sub_index
[
np
.
argsort
(
distances
)]
sub_indexes
.
append
(
sorted_index
[:
ave_num
])
remain_index
.
extend
(
list
(
sorted_index
[
ave_num
:]))
idx
=
0
while
idx
<
self
.
n_clusters
and
len
(
remain_index
)
>
0
:
if
len
(
sub_indexes
[
idx
])
>=
ave_num
:
idx
+=
1
else
:
diff
=
min
(
len
(
remain_index
),
ave_num
-
len
(
sub_indexes
[
idx
]))
sub_indexes
[
idx
]
=
np
.
append
(
sub_indexes
[
idx
],
np
.
array
(
remain_index
[
0
:
diff
]))
remain_index
=
remain_index
[
diff
:]
idx
+=
1
if
len
(
remain_index
)
>
0
:
sub_indexes
[
0
]
=
np
.
append
(
sub_indexes
[
0
],
np
.
array
(
remain_index
))
return
sub_indexes
def
_cluster1
(
self
,
index
):
pass
def
_rebalance
(
self
,
lindex
,
rindex
,
distances
):
sorted_index
=
rindex
[
np
.
argsort
(
distances
)]
idx
=
np
.
concatenate
((
lindex
,
sorted_index
))
mid
=
int
(
len
(
idx
)
/
2
)
return
idx
[
mid
:],
idx
[:
mid
]
if
__name__
==
"__main__"
:
parser
=
argparse
.
ArgumentParser
(
description
=
"Tree cluster"
)
parser
.
add_argument
(
"--embed_file"
,
required
=
True
,
help
=
"filename of the embedded vector file"
)
parser
.
add_argument
(
"--emb_size"
,
type
=
int
,
default
=
64
,
help
=
"dimension of input embedded vector"
)
parser
.
add_argument
(
"--id_offset"
,
default
=
None
,
help
=
"id offset of the generated tree internal node"
)
parser
.
add_argument
(
"--parall"
,
type
=
int
,
default
=
16
,
help
=
"Parall execution process number"
)
parser
.
add_argument
(
"--prev_result"
,
default
=
None
,
help
=
"filename of the previous cluster reuslt"
)
argments
=
parser
.
parse_args
()
t1
=
time
.
time
()
cluster
=
Cluster
(
argments
.
embed_file
,
argments
.
emb_size
,
argments
.
id_offset
,
argments
.
parall
,
argments
.
prev_result
)
cluster
.
train
()
t2
=
time
.
time
()
print
(
"Train complete successfully, elapsed: {}"
.
format
(
t2
-
t1
))
models/treebased/tdm/gen_tree/emb_util.py
0 → 100644
浏览文件 @
182e4f31
# -*- coding=utf8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
import
json
import
argparse
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--mode"
,
default
=
"create_fake_emb"
,
choices
=
[
"create_fake_emb"
,
"save_item_emb"
],
type
=
str
,
help
=
"."
)
parser
.
add_argument
(
"--emb_id_nums"
,
default
=
13
,
type
=
int
,
help
=
"."
)
parser
.
add_argument
(
"--emb_shape"
,
default
=
64
,
type
=
int
,
help
=
"."
)
parser
.
add_argument
(
"--emb_path"
,
default
=
'./item_emb.txt'
,
type
=
str
,
help
=
'.'
)
args
=
parser
.
parse_args
()
def
create_fake_emb
(
emb_id_nums
,
emb_shape
,
emb_path
):
x
=
fluid
.
data
(
name
=
"item"
,
shape
=
[
1
],
lod_level
=
1
,
dtype
=
"int64"
)
# use layers.embedding to init emb value
item_emb
=
fluid
.
layers
.
embedding
(
input
=
x
,
is_sparse
=
True
,
size
=
[
emb_id_nums
,
emb_shape
],
param_attr
=
fluid
.
ParamAttr
(
name
=
"Item_Emb"
,
initializer
=
fluid
.
initializer
.
TruncatedNormal
(
loc
=
0.0
,
scale
=
2.0
)))
# run startup to init emb tensor
exe
=
fluid
.
Executor
(
fluid
.
CPUPlace
())
exe
.
run
(
fluid
.
default_startup_program
())
# get np.array(emb_tensor)
print
(
"Get Emb"
)
item_emb_array
=
np
.
array
(
fluid
.
global_scope
().
find_var
(
"Item_Emb"
)
.
get_tensor
())
with
open
(
emb_path
,
'w+'
)
as
f
:
emb_str
=
""
for
index
,
value
in
enumerate
(
item_emb_array
):
line
=
[]
for
v
in
value
:
line
.
append
(
str
(
v
))
line_str
=
" "
.
join
(
line
)
line_str
+=
"
\t
"
line_str
+=
str
(
index
)
line_str
+=
"
\n
"
emb_str
+=
line_str
f
.
write
(
emb_str
)
print
(
"Item Emb write Finish"
)
if
__name__
==
"__main__"
:
create_fake_emb
(
args
.
emb_id_nums
,
args
.
emb_shape
,
args
.
emb_path
)
models/treebased/tdm/gen_tree/gen_tree.py
0 → 100644
浏览文件 @
182e4f31
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
os
import
argparse
from
cluster
import
Cluster
import
time
import
argparse
from
tree_search_util
import
tree_search_main
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
"--emd_path"
,
default
=
''
,
type
=
str
,
help
=
"."
)
parser
.
add_argument
(
"--emb_size"
,
default
=
64
,
type
=
int
,
help
=
"."
)
parser
.
add_argument
(
"--threads"
,
default
=
1
,
type
=
int
,
help
=
"."
)
parser
.
add_argument
(
"--n_clusters"
,
default
=
3
,
type
=
int
,
help
=
"."
)
parser
.
add_argument
(
"--output_dir"
,
default
=
''
,
type
=
str
,
help
=
'.'
)
args
=
parser
.
parse_args
()
def
main
():
cur_time
=
time
.
strftime
(
'%Y-%m-%d %H:%M:%S'
,
time
.
localtime
(
time
.
time
()))
if
not
os
.
path
.
exists
(
args
.
output_dir
):
os
.
system
(
"mkdir -p "
+
args
.
output_dir
)
print
(
'%s start build tree'
%
cur_time
)
# 1. Tree clustering, generating two files in current directory, tree.pkl, id2item.json
cluster
=
Cluster
(
args
.
emd_path
,
args
.
emb_size
,
parall
=
args
.
threads
,
output_dir
=
args
.
output_dir
,
_n_clusters
=
args
.
n_clusters
)
cluster
.
train
()
# 2. Tree searching, generating tree_info, travel_list, layer_list for train process.
tree_search_main
(
os
.
path
.
join
(
args
.
output_dir
,
"tree.pkl"
),
os
.
path
.
join
(
args
.
output_dir
,
"id2item.json"
),
args
.
output_dir
,
args
.
n_clusters
)
if
__name__
==
"__main__"
:
main
()
models/treebased/tdm/gen_tree/tree_builder.py
0 → 100644
浏览文件 @
182e4f31
# Copyright (C) 2016-2018 Alibaba Group Holding Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
print_function
import
numpy
as
np
import
sys
import
os
import
codecs
from
tree_impl
import
_build
_CUR_DIR
=
os
.
path
.
dirname
(
os
.
path
.
realpath
(
__file__
))
sys
.
path
.
append
(
os
.
path
.
join
(
_CUR_DIR
,
".."
))
class
TreeBuilder
:
def
__init__
(
self
,
output_dir
=
'./'
,
n_clusters
=
2
):
self
.
output_dir
=
output_dir
self
.
n_clusters
=
n_clusters
def
build
(
self
,
ids
,
codes
,
data
=
None
,
items
=
None
,
id_offset
=
None
,
):
_build
(
ids
,
codes
,
data
,
items
,
self
.
output_dir
,
self
.
n_clusters
)
def
_ancessors
(
self
,
code
):
ancs
=
[]
while
code
>
0
:
code
=
int
((
code
-
1
)
/
2
)
ancs
.
append
(
code
)
return
ancs
models/treebased/tdm/gen_tree/tree_impl.py
0 → 100644
浏览文件 @
182e4f31
# Copyright (C) 2016-2018 Alibaba Group Holding Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
anytree
import
NodeMixin
,
RenderTree
import
numpy
as
np
from
anytree.exporter.dictexporter
import
DictExporter
import
pickle
import
json
import
os
import
time
class
BaseClass
(
object
):
pass
class
TDMTreeClass
(
BaseClass
,
NodeMixin
):
def
__init__
(
self
,
key_code
,
emb_vec
,
ids
=
None
,
text
=
None
,
parent
=
None
,
children
=
None
):
super
(
TDMTreeClass
,
self
).
__init__
()
self
.
key_code
=
key_code
self
.
ids
=
ids
self
.
emb_vec
=
emb_vec
self
.
text
=
text
self
.
parent
=
parent
if
children
:
self
.
children
=
children
def
set_parent
(
self
,
parent
):
self
.
parent
=
parent
def
set_children
(
self
,
children
):
self
.
children
=
children
def
_build
(
ids
,
codes
,
data
,
items
,
output_dir
,
n_clusters
=
2
):
code_list
=
[
0
]
*
50000000
node_dict
=
{}
max_code
=
0
id2item
=
{}
curtime
=
time
.
strftime
(
'%Y-%m-%d %H:%M:%S'
,
time
.
localtime
(
time
.
time
()))
print
(
'%s start gen code_list'
%
curtime
)
for
_id
,
code
,
datum
,
item
in
zip
(
ids
,
codes
,
data
,
items
):
code_list
[
code
]
=
[
datum
,
_id
]
id2item
[
str
(
_id
)]
=
item
max_code
=
max
(
code
,
max_code
)
ancessors
=
_ancessors
(
code
,
n_clusters
)
for
ancessor
in
ancessors
:
code_list
[
ancessor
]
=
[[]]
for
code
in
range
(
max_code
,
-
1
,
-
1
):
if
code_list
[
code
]
==
0
:
continue
if
len
(
code_list
[
code
])
>
1
:
pass
elif
len
(
code_list
[
code
])
==
1
:
code_list
[
code
][
0
]
=
np
.
mean
(
code_list
[
code
][
0
],
axis
=
0
)
if
code
>
0
:
ancessor
=
int
((
code
-
1
)
/
n_clusters
)
code_list
[
ancessor
][
0
].
append
(
code_list
[
code
][
0
])
print
(
'start gen node_dict'
)
for
code
in
range
(
0
,
max_code
+
1
):
if
code_list
[
code
]
==
0
:
continue
if
len
(
code_list
[
code
])
>
1
:
[
datum
,
_id
]
=
code_list
[
code
]
node_dict
[
code
]
=
TDMTreeClass
(
code
,
emb_vec
=
datum
,
ids
=
_id
)
elif
len
(
code_list
[
code
])
==
1
:
[
datum
]
=
code_list
[
code
]
node_dict
[
code
]
=
TDMTreeClass
(
code
,
emb_vec
=
datum
)
if
code
>
0
:
ancessor
=
int
((
code
-
1
)
/
n_clusters
)
node_dict
[
code
].
set_parent
(
node_dict
[
ancessor
])
save_tree
(
node_dict
[
0
],
os
.
path
.
join
(
output_dir
,
'tree.pkl'
))
save_dict
(
id2item
,
os
.
path
.
join
(
output_dir
,
'id2item.json'
))
def
render
(
root
):
for
row
in
RenderTree
(
root
,
childiter
=
reversed
):
print
(
"%s%s"
%
(
row
.
pre
,
row
.
node
.
text
))
def
save_tree
(
root
,
path
):
print
(
'save tree to %s'
%
path
)
exporter
=
DictExporter
()
data
=
exporter
.
export
(
root
)
f
=
open
(
path
,
'wb'
)
pickle
.
dump
(
data
,
f
)
f
.
close
()
def
save_dict
(
dic
,
filename
):
"""save dict into json file"""
print
(
'save dict to %s'
%
filename
)
with
open
(
filename
,
"w"
)
as
json_file
:
json
.
dump
(
dic
,
json_file
,
ensure_ascii
=
False
)
def
_ancessors
(
code
,
n_clusters
):
ancs
=
[]
while
code
>
0
:
code
=
int
((
code
-
1
)
/
n_clusters
)
ancs
.
append
(
code
)
return
ancs
models/treebased/tdm/gen_tree/tree_search_util.py
0 → 100644
浏览文件 @
182e4f31
# -*- coding=utf8 -*-
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
json
import
pickle
import
time
import
os
import
numpy
as
np
from
anytree
import
(
AsciiStyle
,
LevelOrderGroupIter
,
LevelOrderIter
,
Node
,
NodeMixin
,
RenderTree
)
from
anytree.importer.dictimporter
import
DictImporter
from
anytree.iterators.abstractiter
import
AbstractIter
from
anytree.walker
import
Walker
from
tree_impl
import
TDMTreeClass
class
myLevelOrderIter
(
AbstractIter
):
@
staticmethod
def
_iter
(
children
,
filter_
,
stop
,
maxlevel
):
level
=
1
while
children
:
next_children
=
[]
for
child
in
children
:
if
filter_
(
child
):
yield
child
,
level
next_children
+=
AbstractIter
.
_get_children
(
child
.
children
,
stop
)
children
=
next_children
level
+=
1
if
AbstractIter
.
_abort_at_level
(
level
,
maxlevel
):
break
class
Tree_search
(
object
):
def
__init__
(
self
,
tree_path
,
id2item_path
,
child_num
=
2
):
self
.
root
=
None
self
.
id2item
=
None
self
.
item2id
=
None
self
.
child_num
=
child_num
self
.
load
(
tree_path
)
# self.load_id2item(id2item_path)
self
.
level_code
=
[[]]
self
.
max_level
=
0
self
.
keycode_id_dict
=
{}
# embedding
self
.
keycode_nodeid_dict
=
{}
self
.
tree_info
=
[]
self
.
id_node_dict
=
{}
self
.
get_keycode_mapping
()
self
.
travel_tree
()
self
.
get_children
()
def
get_keycode_mapping
(
self
):
nodeid
=
0
self
.
embedding
=
[]
print
(
"Begin Keycode Mapping"
)
for
node
in
myLevelOrderIter
(
self
.
root
):
node
,
level
=
node
if
level
-
1
>
self
.
max_level
:
self
.
max_level
=
level
-
1
self
.
level_code
.
append
([])
if
node
.
ids
is
not
None
:
self
.
keycode_id_dict
[
node
.
key_code
]
=
node
.
ids
self
.
id_node_dict
[
node
.
ids
]
=
node
self
.
keycode_nodeid_dict
[
node
.
key_code
]
=
nodeid
self
.
level_code
[
self
.
max_level
].
append
(
nodeid
)
node_infos
=
[]
if
node
.
ids
is
not
None
:
# item_id
node_infos
.
append
(
node
.
ids
)
else
:
node_infos
.
append
(
0
)
node_infos
.
append
(
self
.
max_level
)
# layer_id
if
node
.
parent
:
# ancestor_id
node_infos
.
append
(
self
.
keycode_nodeid_dict
[
node
.
parent
.
key_code
])
else
:
node_infos
.
append
(
0
)
self
.
tree_info
.
append
(
node_infos
)
self
.
embedding
.
append
(
node
.
emb_vec
)
nodeid
+=
1
if
nodeid
%
1000
==
0
:
print
(
"travel node id {}"
.
format
(
nodeid
))
def
load
(
self
,
path
):
print
(
"Begin Load Tree"
)
f
=
open
(
path
,
"rb"
)
data
=
pickle
.
load
(
f
)
pickle
.
dump
(
data
,
open
(
path
,
"wb"
),
protocol
=
2
)
importer
=
DictImporter
()
self
.
root
=
importer
.
import_
(
data
)
f
.
close
()
def
load_id2item
(
self
,
path
):
"""load dict from json file"""
with
open
(
path
,
"rb"
)
as
json_file
:
self
.
id2item
=
json
.
load
(
json_file
)
self
.
item2id
=
{
value
:
int
(
key
)
for
key
,
value
in
self
.
id2item
.
items
()}
def
get_children
(
self
):
"""get every node children info"""
print
(
"Begin Keycode Mapping"
)
for
node
in
myLevelOrderIter
(
self
.
root
):
node
,
level
=
node
node_id
=
self
.
keycode_nodeid_dict
[
node
.
key_code
]
child_idx
=
0
if
node
.
children
:
for
child
in
node
.
children
:
self
.
tree_info
[
node_id
].
append
(
self
.
keycode_nodeid_dict
[
child
.
key_code
])
child_idx
+=
1
while
child_idx
<
self
.
child_num
:
self
.
tree_info
[
node_id
].
append
(
0
)
child_idx
+=
1
if
node_id
%
1000
==
0
:
print
(
"get children node id {}"
.
format
(
node_id
))
def
travel_tree
(
self
):
self
.
travel_list
=
[]
tree_walker
=
Walker
()
print
(
"Begin Travel Tree"
)
for
item
in
sorted
(
self
.
id_node_dict
.
keys
()):
node
=
self
.
id_node_dict
[
int
(
item
)]
paths
,
_
,
_
=
tree_walker
.
walk
(
node
,
self
.
root
)
paths
=
list
(
paths
)
paths
.
reverse
()
travel
=
[
self
.
keycode_nodeid_dict
[
i
.
key_code
]
for
i
in
paths
]
while
len
(
travel
)
<
self
.
max_level
:
travel
.
append
(
0
)
self
.
travel_list
.
append
(
travel
)
def
tree_search_main
(
tree_path
,
id2item_path
,
output_dir
,
n_clusters
=
2
):
print
(
"Begin Tree Search"
)
t
=
Tree_search
(
tree_path
,
id2item_path
,
n_clusters
)
# 1. Walk all leaf nodes, get travel path array
travel_list
=
np
.
array
(
t
.
travel_list
)
np
.
save
(
os
.
path
.
join
(
output_dir
,
"travel_list.npy"
),
travel_list
)
with
open
(
os
.
path
.
join
(
output_dir
,
"travel_list.txt"
),
'w'
)
as
fout
:
for
i
,
travel
in
enumerate
(
t
.
travel_list
):
travel
=
map
(
str
,
travel
)
fout
.
write
(
','
.
join
(
travel
))
fout
.
write
(
"
\n
"
)
print
(
"End Save tree travel"
)
# 2. Walk all layer of tree, get layer array
layer_num
=
0
with
open
(
os
.
path
.
join
(
output_dir
,
"layer_list.txt"
),
'w'
)
as
fout
:
for
layer
in
t
.
level_code
:
# exclude layer 0
if
layer_num
==
0
:
layer_num
+=
1
continue
for
idx
in
range
(
len
(
layer
)
-
1
):
fout
.
write
(
str
(
layer
[
idx
])
+
','
)
fout
.
write
(
str
(
layer
[
-
1
])
+
"
\n
"
)
print
(
"Layer {} has {} node, the first {}, the last {}"
.
format
(
layer_num
,
len
(
layer
),
layer
[
0
],
layer
[
-
1
]))
layer_num
+=
1
print
(
"End Save tree layer"
)
# 3. Walk all node of tree, get tree info
tree_info
=
np
.
array
(
t
.
tree_info
)
np
.
save
(
os
.
path
.
join
(
output_dir
,
"tree_info.npy"
),
tree_info
)
with
open
(
os
.
path
.
join
(
output_dir
,
"tree_info.txt"
),
'w'
)
as
fout
:
for
i
,
node_infos
in
enumerate
(
t
.
tree_info
):
node_infos
=
map
(
str
,
node_infos
)
fout
.
write
(
','
.
join
(
node_infos
))
fout
.
write
(
"
\n
"
)
print
(
"End Save tree info"
)
# 4. save embedding
embedding
=
np
.
array
(
t
.
embedding
)
np
.
save
(
os
.
path
.
join
(
output_dir
,
"tree_emb.npy"
),
embedding
)
with
open
(
os
.
path
.
join
(
output_dir
,
"tree_embedding.txt"
),
"w"
)
as
fout
:
for
i
,
emb
in
enumerate
(
t
.
embedding
):
emb
=
map
(
str
,
emb
)
fout
.
write
(
','
.
join
(
emb
))
fout
.
write
(
"
\n
"
)
if
__name__
==
"__main__"
:
tree_path
=
"./tree.pkl"
id2item_path
=
"./id2item.json"
output_dir
=
"./output"
if
not
os
.
path
.
exists
(
output_dir
):
os
.
system
(
"mkdir -p "
+
output_dir
)
tree_search_main
(
tree_path
,
id2item_path
,
output_dir
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录