Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
12fc8c82
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
12fc8c82
编写于
8月 19, 2020
作者:
C
Chengmo
提交者:
GitHub
8月 19, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix k8s_datasplit & save_model (#167)
* fix save inference
上级
d4a280b5
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
93 addition
and
9 deletion
+93
-9
core/engine/cluster/cloud/k8s_config.ini.template
core/engine/cluster/cloud/k8s_config.ini.template
+1
-0
core/engine/cluster/cloud/mpi_config.ini.template
core/engine/cluster/cloud/mpi_config.ini.template
+1
-0
core/trainer.py
core/trainer.py
+10
-0
core/trainers/framework/dataset.py
core/trainers/framework/dataset.py
+11
-0
core/trainers/framework/runner.py
core/trainers/framework/runner.py
+36
-7
core/utils/dataloader_instance.py
core/utils/dataloader_instance.py
+34
-2
未找到文件。
core/engine/cluster/cloud/k8s_config.ini.template
浏览文件 @
12fc8c82
...
...
@@ -19,6 +19,7 @@ afs_local_mount_point="/root/paddlejob/workspace/env_run/afs/"
# 新k8s afs挂载帮助文档: http://wiki.baidu.com/pages/viewpage.action?pageId=906443193
PADDLE_PADDLEREC_ROLE=WORKER
PADDLEREC_CLUSTER_TYPE=K8S
use_python3=<$ USE_PYTHON3 $>
CPU_NUM=<$ CPU_NUM $>
GLOG_v=0
...
...
core/engine/cluster/cloud/mpi_config.ini.template
浏览文件 @
12fc8c82
...
...
@@ -17,6 +17,7 @@ output_path=<$ OUTPUT_PATH $>
thirdparty_path=<$ THIRDPARTY_PATH $>
PADDLE_PADDLEREC_ROLE=WORKER
PADDLEREC_CLUSTER_TYPE=MPI
use_python3=<$ USE_PYTHON3 $>
CPU_NUM=<$ CPU_NUM $>
GLOG_v=0
...
...
core/trainer.py
浏览文件 @
12fc8c82
...
...
@@ -107,6 +107,7 @@ class Trainer(object):
self
.
device
=
Device
.
GPU
gpu_id
=
int
(
os
.
environ
.
get
(
'FLAGS_selected_gpus'
,
0
))
self
.
_place
=
fluid
.
CUDAPlace
(
gpu_id
)
print
(
"PaddleRec run on device GPU: {}"
.
format
(
gpu_id
))
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
elif
device
==
"CPU"
:
self
.
device
=
Device
.
CPU
...
...
@@ -146,6 +147,7 @@ class Trainer(object):
elif
engine
.
upper
()
==
"CLUSTER"
:
self
.
engine
=
EngineMode
.
CLUSTER
self
.
is_fleet
=
True
self
.
which_cluster_type
()
else
:
raise
ValueError
(
"Not Support Engine {}"
.
format
(
engine
))
self
.
_context
[
"is_fleet"
]
=
self
.
is_fleet
...
...
@@ -165,6 +167,14 @@ class Trainer(object):
self
.
_context
[
"is_pslib"
]
=
(
fleet_mode
.
upper
()
==
"PSLIB"
)
self
.
_context
[
"fleet_mode"
]
=
fleet_mode
def
which_cluster_type
(
self
):
cluster_type
=
os
.
getenv
(
"PADDLEREC_CLUSTER_TYPE"
,
"MPI"
)
print
(
"PADDLEREC_CLUSTER_TYPE: {}"
.
format
(
cluster_type
))
if
cluster_type
and
cluster_type
.
upper
()
==
"K8S"
:
self
.
_context
[
"cluster_type"
]
=
"K8S"
else
:
self
.
_context
[
"cluster_type"
]
=
"MPI"
def
which_executor_mode
(
self
):
executor_mode
=
envs
.
get_runtime_environ
(
"train.trainer.executor_mode"
)
if
executor_mode
.
upper
()
not
in
[
"TRAIN"
,
"INFER"
]:
...
...
core/trainers/framework/dataset.py
浏览文件 @
12fc8c82
...
...
@@ -123,10 +123,21 @@ class QueueDataset(DatasetBase):
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
file_list
.
sort
()
need_split_files
=
False
if
context
[
"engine"
]
==
EngineMode
.
LOCAL_CLUSTER
:
# for local cluster: split files for multi process
need_split_files
=
True
elif
context
[
"engine"
]
==
EngineMode
.
CLUSTER
and
context
[
"cluster_type"
]
==
"K8S"
:
# for k8s mount afs, split files for every node
need_split_files
=
True
if
need_split_files
:
file_list
=
split_files
(
file_list
,
context
[
"fleet"
].
worker_index
(),
context
[
"fleet"
].
worker_num
())
print
(
"File_list: {}"
.
format
(
file_list
))
dataset
.
set_filelist
(
file_list
)
for
model_dict
in
context
[
"phases"
]:
if
model_dict
[
"dataset_name"
]
==
dataset_name
:
...
...
core/trainers/framework/runner.py
浏览文件 @
12fc8c82
...
...
@@ -16,6 +16,7 @@ from __future__ import print_function
import
os
import
time
import
warnings
import
numpy
as
np
import
paddle.fluid
as
fluid
...
...
@@ -284,6 +285,7 @@ class RunnerBase(object):
return
(
epoch_id
+
1
)
%
epoch_interval
==
0
def
save_inference_model
():
# get global env
name
=
"runner."
+
context
[
"runner_name"
]
+
"."
save_interval
=
int
(
envs
.
get_global_env
(
name
+
"save_inference_interval"
,
-
1
))
...
...
@@ -296,16 +298,42 @@ class RunnerBase(object):
if
feed_varnames
is
None
or
fetch_varnames
is
None
or
feed_varnames
==
""
or
fetch_varnames
==
""
or
\
len
(
feed_varnames
)
==
0
or
len
(
fetch_varnames
)
==
0
:
return
fetch_vars
=
[
fluid
.
default_main_program
().
global_block
().
vars
[
varname
]
for
varname
in
fetch_varnames
]
# check feed var exist
for
var_name
in
feed_varnames
:
if
var_name
not
in
fluid
.
default_main_program
().
global_block
(
).
vars
:
raise
ValueError
(
"Feed variable: {} not in default_main_program, global block has follow vars: {}"
.
format
(
var_name
,
fluid
.
default_main_program
().
global_block
()
.
vars
.
keys
()))
# check fetch var exist
fetch_vars
=
[]
for
var_name
in
fetch_varnames
:
if
var_name
not
in
fluid
.
default_main_program
().
global_block
(
).
vars
:
raise
ValueError
(
"Fetch variable: {} not in default_main_program, global block has follow vars: {}"
.
format
(
var_name
,
fluid
.
default_main_program
().
global_block
()
.
vars
.
keys
()))
else
:
fetch_vars
.
append
(
fluid
.
default_main_program
()
.
global_block
().
vars
[
var_name
])
dirname
=
envs
.
get_global_env
(
name
+
"save_inference_path"
,
None
)
assert
dirname
is
not
None
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
if
is_fleet
:
warnings
.
warn
(
"Save inference model in cluster training is not recommended! Using save checkpoint instead."
,
category
=
UserWarning
,
stacklevel
=
2
)
if
context
[
"fleet"
].
worker_index
()
==
0
:
context
[
"fleet"
].
save_inference_model
(
context
[
"exe"
],
dirname
,
feed_varnames
,
fetch_vars
)
else
:
...
...
@@ -323,6 +351,7 @@ class RunnerBase(object):
return
dirname
=
os
.
path
.
join
(
dirname
,
str
(
epoch_id
))
if
is_fleet
:
if
context
[
"fleet"
].
worker_index
()
==
0
:
context
[
"fleet"
].
save_persistables
(
context
[
"exe"
],
dirname
)
else
:
fluid
.
io
.
save_persistables
(
context
[
"exe"
],
dirname
)
...
...
core/utils/dataloader_instance.py
浏览文件 @
12fc8c82
...
...
@@ -39,9 +39,21 @@ def dataloader_by_name(readerclass,
data_path
=
os
.
path
.
join
(
package_base
,
data_path
.
split
(
"::"
)[
1
])
files
=
[
str
(
data_path
)
+
"/%s"
%
x
for
x
in
os
.
listdir
(
data_path
)]
files
.
sort
()
need_split_files
=
False
if
context
[
"engine"
]
==
EngineMode
.
LOCAL_CLUSTER
:
# for local cluster: split files for multi process
need_split_files
=
True
elif
context
[
"engine"
]
==
EngineMode
.
CLUSTER
and
context
[
"cluster_type"
]
==
"K8S"
:
# for k8s mount mode, split files for every node
need_split_files
=
True
print
(
"need_split_files: {}"
.
format
(
need_split_files
))
if
need_split_files
:
files
=
split_files
(
files
,
context
[
"fleet"
].
worker_index
(),
context
[
"fleet"
].
worker_num
())
print
(
"file_list : {}"
.
format
(
files
))
reader
=
reader_class
(
yaml_file
)
...
...
@@ -81,10 +93,20 @@ def slotdataloader_by_name(readerclass, dataset_name, yaml_file, context):
data_path
=
os
.
path
.
join
(
package_base
,
data_path
.
split
(
"::"
)[
1
])
files
=
[
str
(
data_path
)
+
"/%s"
%
x
for
x
in
os
.
listdir
(
data_path
)]
files
.
sort
()
need_split_files
=
False
if
context
[
"engine"
]
==
EngineMode
.
LOCAL_CLUSTER
:
# for local cluster: split files for multi process
need_split_files
=
True
elif
context
[
"engine"
]
==
EngineMode
.
CLUSTER
and
context
[
"cluster_type"
]
==
"K8S"
:
# for k8s mount mode, split files for every node
need_split_files
=
True
if
need_split_files
:
files
=
split_files
(
files
,
context
[
"fleet"
].
worker_index
(),
context
[
"fleet"
].
worker_num
())
print
(
"file_list: {}"
.
format
(
files
))
sparse
=
get_global_env
(
name
+
"sparse_slots"
,
"#"
)
if
sparse
==
""
:
...
...
@@ -135,10 +157,20 @@ def slotdataloader(readerclass, train, yaml_file, context):
data_path
=
os
.
path
.
join
(
package_base
,
data_path
.
split
(
"::"
)[
1
])
files
=
[
str
(
data_path
)
+
"/%s"
%
x
for
x
in
os
.
listdir
(
data_path
)]
files
.
sort
()
need_split_files
=
False
if
context
[
"engine"
]
==
EngineMode
.
LOCAL_CLUSTER
:
# for local cluster: split files for multi process
need_split_files
=
True
elif
context
[
"engine"
]
==
EngineMode
.
CLUSTER
and
context
[
"cluster_type"
]
==
"K8S"
:
# for k8s mount mode, split files for every node
need_split_files
=
True
if
need_split_files
:
files
=
split_files
(
files
,
context
[
"fleet"
].
worker_index
(),
context
[
"fleet"
].
worker_num
())
print
(
"file_list: {}"
.
format
(
files
))
sparse
=
get_global_env
(
"sparse_slots"
,
"#"
,
namespace
)
if
sparse
==
""
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录