Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
07388edd
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
07388edd
编写于
6月 06, 2020
作者:
M
malin10
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
bug fix
上级
07f9c21f
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
179 addition
and
6 deletion
+179
-6
models/demo/movie_recommand/offline_test.sh
models/demo/movie_recommand/offline_test.sh
+1
-1
models/demo/movie_recommand/parse.py
models/demo/movie_recommand/parse.py
+176
-0
models/demo/movie_recommand/train.sh
models/demo/movie_recommand/train.sh
+2
-5
未找到文件。
models/demo/movie_recommand/offline_test.sh
浏览文件 @
07388edd
...
@@ -9,4 +9,4 @@ cd ..
...
@@ -9,4 +9,4 @@ cd ..
echo
"recall offline test result:"
echo
"recall offline test result:"
python parse.py recall_offline recall/infer_result
python parse.py recall_offline recall/infer_result
echo
"rank offline test result:"
echo
"rank offline test result:"
python parse.py r
ecall
_offline rank/infer_result
python parse.py r
ank
_offline rank/infer_result
models/demo/movie_recommand/parse.py
0 → 100644
浏览文件 @
07388edd
#coding=utf8
import
sys
reload
(
sys
)
sys
.
setdefaultencoding
(
'utf-8'
)
import
random
import
json
import
numpy
as
np
import
operator
user_fea
=
[
"userid"
,
"gender"
,
"age"
,
"occupation"
]
movie_fea
=
[
"movieid"
,
"title"
,
"genres"
]
rating_fea
=
[
"userid"
,
"movieid"
,
"rating"
,
"time"
]
dict_size
=
60000000
hash_dict
=
dict
()
data_path
=
"data/ml-1m"
test_user_path
=
"data/online_user"
topk
=
100
def
read_raw_data
():
user_dict
=
parse_data
(
data_path
+
"/users.dat"
,
user_fea
)
movie_dict
=
parse_data
(
data_path
+
"/movies.dat"
,
movie_fea
)
ratings_dict
=
dict
()
for
line
in
open
(
data_path
+
"/ratings.dat"
):
arr
=
line
.
strip
().
split
(
"::"
)
if
arr
[
0
]
not
in
ratings_dict
:
ratings_dict
[
arr
[
0
]]
=
[]
tmp
=
dict
()
tmp
[
"movieid"
]
=
arr
[
1
]
tmp
[
"score"
]
=
arr
[
2
]
tmp
[
"time"
]
=
arr
[
3
]
ratings_dict
[
arr
[
0
]].
append
(
tmp
)
return
user_dict
,
movie_dict
,
ratings_dict
def
parse_data
(
file_name
,
feas
):
res
=
{}
for
line
in
open
(
file_name
):
line
=
line
.
strip
()
arr
=
line
.
split
(
"::"
)
res
[
arr
[
0
]]
=
dict
()
_
=
to_hash
(
feas
[
0
],
arr
[
0
])
for
i
in
range
(
0
,
len
(
feas
)):
res
[
arr
[
0
]][
feas
[
i
]]
=
arr
[
i
]
return
res
def
to_hash
(
feas
,
arr
):
out_str
=
"%s:%s"
%
(
feas
,
(
arr
+
arr
[::
-
1
]
+
arr
[::
-
2
]
+
arr
[::
-
3
]))
hash_id
=
hash
(
out_str
)
%
dict_size
if
hash_id
in
hash_dict
and
hash_dict
[
hash_id
]
!=
out_str
:
print
(
hash_id
,
out_str
,
hash
(
out_str
),
hash_dict
[
hash_id
])
print
(
"conflict"
)
exit
(
-
1
)
hash_dict
[
hash_id
]
=
out_str
return
hash_id
def
load_ground_truth
(
user_dict
,
movie_dict
,
ratings_dict
):
for
line
in
open
(
test_user_path
+
"/users.dat"
):
uid
=
line
.
strip
().
split
(
"::"
)[
0
]
display_user
(
user_dict
[
uid
])
ratings_dict
[
uid
]
=
sorted
(
ratings_dict
[
uid
],
key
=
lambda
i
:
(
i
[
"score"
],
i
[
"time"
]),
reverse
=
True
)
ratings_dict
[
uid
]
=
ratings_dict
[
uid
][:
topk
]
for
i
in
range
(
len
(
ratings_dict
[
uid
])):
item
=
ratings_dict
[
uid
][
i
]
mid
=
item
[
"movieid"
]
for
key
in
movie_fea
:
item
[
key
]
=
movie_dict
[
mid
][
key
]
display_movies
(
ratings_dict
[
uid
])
def
load_infer_results
(
path
,
feas
,
movie_dict
):
with
open
(
path
)
as
f
:
content
=
json
.
load
(
f
)
total
=
0
correct
=
0
mae
=
0.0
res
=
dict
()
for
item
in
content
:
userid
=
reduce
(
operator
.
add
,
item
[
feas
[
"userid"
]])
movieid
=
reduce
(
operator
.
add
,
item
[
feas
[
"movieid"
]])
ratings
=
reduce
(
operator
.
add
,
item
[
feas
[
"ratings"
]])
predict
=
map
(
int
,
ratings
)
label
=
reduce
(
operator
.
add
,
item
[
feas
[
"label"
]])
mae
+=
sum
(
np
.
square
(
np
.
array
(
ratings
)
-
np
.
array
(
label
)))
total
+=
len
(
label
)
correct
+=
sum
(
np
.
array
(
predict
)
==
np
.
array
(
label
))
for
i
in
range
(
len
(
userid
)):
hash_uid
=
userid
[
i
]
hash_mid
=
movieid
[
i
]
if
hash_uid
not
in
hash_dict
or
hash_mid
not
in
hash_dict
:
continue
tmp
=
hash_dict
[
hash_uid
].
split
(
':'
)[
1
]
uid
=
tmp
[:
len
(
tmp
)
/
3
]
tmp
=
hash_dict
[
hash_mid
].
split
(
':'
)[
1
]
mid
=
tmp
[:
len
(
tmp
)
/
3
]
if
uid
not
in
res
:
res
[
uid
]
=
[]
item
=
{
"score"
:
ratings
[
i
]}
for
info
in
movie_dict
[
mid
]:
item
[
info
]
=
movie_dict
[
mid
][
info
]
res
[
uid
].
append
(
item
)
for
key
in
res
:
tmp
=
sorted
(
res
[
key
],
key
=
lambda
i
:
i
[
"score"
],
reverse
=
True
)
existed_movie
=
[]
res
[
key
]
=
[]
for
i
in
range
(
len
(
tmp
)):
if
len
(
res
[
key
])
>=
topk
:
break
if
tmp
[
i
][
"movieid"
]
not
in
existed_movie
:
existed_movie
.
append
(
tmp
[
i
][
"movieid"
])
res
[
key
].
append
(
tmp
[
i
])
print
(
"total: "
+
str
(
total
)
+
"; correct: "
+
str
(
correct
))
print
(
"accuracy: "
+
str
(
float
(
correct
)
/
total
))
print
(
"mae: "
+
str
(
mae
/
total
))
return
res
def
display_user
(
item
):
out_str
=
""
for
key
in
user_fea
:
out_str
+=
"%s:%s "
%
(
key
,
item
[
key
])
print
(
out_str
)
def
display_movies
(
input
):
for
item
in
input
:
print_str
=
""
for
key
in
movie_fea
:
print_str
+=
"%s:%s "
%
(
key
,
item
[
key
])
print_str
+=
"%s:%s"
%
(
"score"
,
item
[
"score"
])
print
(
print_str
)
def
parse_infer
(
mode
,
path
,
user_dict
,
movie_dict
):
stage
,
online
=
mode
.
split
(
'_'
)
feas
=
{
"userid"
:
"userid"
,
"movieid"
:
"movieid"
,
"ratings"
:
"scale_0.tmp_0"
,
"label"
:
"label"
}
infer_results
=
load_infer_results
(
path
,
feas
,
movie_dict
)
if
online
.
startswith
(
"offline"
):
return
for
uid
in
infer_results
:
display_user
(
user_dict
[
uid
])
display_movies
(
infer_results
[
uid
])
with
open
(
test_user_path
+
"/movies.dat"
,
'w'
)
as
fout
:
for
uid
in
infer_results
:
for
item
in
infer_results
[
uid
]:
str_
=
uid
+
"::"
+
str
(
item
[
"movieid"
])
+
"::"
+
str
(
int
(
item
[
"score"
]))
+
"
\n
"
fout
.
write
(
str_
)
if
__name__
==
"__main__"
:
user_dict
,
movie_dict
,
ratings_dict
=
read_raw_data
()
if
sys
.
argv
[
1
]
==
"ground_truth"
:
load_ground_truth
(
user_dict
,
movie_dict
,
ratings_dict
)
else
:
parse_infer
(
sys
.
argv
[
1
],
sys
.
argv
[
2
],
user_dict
,
movie_dict
)
models/demo/movie_recommand/train.sh
浏览文件 @
07388edd
cd
recall
cd
recall
python
-m
paddlerec.run
-m
./config.yaml
python
-m
paddlerec.run
-m
./config.yaml
&> log &
cd
../rank
cd
../rank
python
-m
paddlerec.run
-m
./config.yaml &>
train_
log &
python
-m
paddlerec.run
-m
./config.yaml &> log &
cd
..
cd
..
echo
"recall offline test: "
python infer_analys
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录