Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleRec
提交
03dfc413
P
PaddleRec
项目概览
PaddlePaddle
/
PaddleRec
通知
68
Star
12
Fork
5
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
27
列表
看板
标记
里程碑
合并请求
10
Wiki
1
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleRec
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
27
Issue
27
列表
看板
标记
里程碑
合并请求
10
合并请求
10
Pages
分析
分析
仓库分析
DevOps
Wiki
1
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
03dfc413
编写于
5月 27, 2020
作者:
X
xjqbest
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix
上级
e8d99992
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
351 addition
and
547 deletion
+351
-547
core/factory.py
core/factory.py
+0
-4
core/model.py
core/model.py
+27
-10
core/reader.py
core/reader.py
+6
-4
core/trainers/single_auc_yamlopt.py
core/trainers/single_auc_yamlopt.py
+0
-214
core/trainers/single_trainer.py
core/trainers/single_trainer.py
+218
-64
core/trainers/single_trainer_yamlopt.py
core/trainers/single_trainer_yamlopt.py
+0
-214
core/trainers/transpiler_trainer.py
core/trainers/transpiler_trainer.py
+4
-0
core/utils/dataloader_instance.py
core/utils/dataloader_instance.py
+91
-1
core/utils/envs.py
core/utils/envs.py
+0
-2
models/rank/dnn/config.yaml
models/rank/dnn/config.yaml
+4
-3
run.py
run.py
+1
-31
未找到文件。
core/factory.py
浏览文件 @
03dfc413
...
@@ -36,10 +36,6 @@ def trainer_registry():
...
@@ -36,10 +36,6 @@ def trainer_registry():
"tdm_single_trainer.py"
)
"tdm_single_trainer.py"
)
trainers
[
"TDMClusterTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
trainers
[
"TDMClusterTrainer"
]
=
os
.
path
.
join
(
trainer_abs
,
"tdm_cluster_trainer.py"
)
"tdm_cluster_trainer.py"
)
trainers
[
"SingleTrainerYamlOpt"
]
=
os
.
path
.
join
(
trainer_abs
,
"single_trainer_yamlopt.py"
)
trainers
[
"SingleAucYamlOpt"
]
=
os
.
path
.
join
(
trainer_abs
,
"single_auc_yamlopt.py"
)
trainer_registry
()
trainer_registry
()
...
...
core/model.py
浏览文件 @
03dfc413
...
@@ -39,15 +39,32 @@ class Model(object):
...
@@ -39,15 +39,32 @@ class Model(object):
self
.
_platform
=
envs
.
get_platform
()
self
.
_platform
=
envs
.
get_platform
()
self
.
_init_hyper_parameters
()
self
.
_init_hyper_parameters
()
self
.
_env
=
config
self
.
_env
=
config
self
.
_slot_inited
=
False
def
_init_hyper_parameters
(
self
):
def
_init_hyper_parameters
(
self
):
pass
pass
def
_init_slots
(
self
):
def
_init_slots
(
self
,
**
kargs
):
sparse_slots
=
envs
.
get_global_env
(
"sparse_slots"
,
None
,
if
self
.
_slot_inited
:
"train.reader"
)
return
dense_slots
=
envs
.
get_global_env
(
"dense_slots"
,
None
,
"train.reader"
)
self
.
_slot_inited
=
True
dataset
=
{}
model_dict
=
{}
#self._env["executor"]#[kargs["name"]]
for
i
in
self
.
_env
[
"executor"
]:
if
i
[
"name"
]
==
kargs
[
"name"
]:
model_dict
=
i
break
for
i
in
self
.
_env
[
"dataset"
]:
if
i
[
"name"
]
==
model_dict
[
"dataset_name"
]:
dataset
=
i
break
name
=
"dataset."
+
dataset
[
"name"
]
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
#"sparse_slots", None,
#"train.reader")
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
#"dense_slots", None, "train.reader")
#print(sparse_slots)
#print(dense_slots)
if
sparse_slots
is
not
None
or
dense_slots
is
not
None
:
if
sparse_slots
is
not
None
or
dense_slots
is
not
None
:
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
...
@@ -70,12 +87,13 @@ class Model(object):
...
@@ -70,12 +87,13 @@ class Model(object):
self
.
_data_var
.
append
(
l
)
self
.
_data_var
.
append
(
l
)
self
.
_sparse_data_var
.
append
(
l
)
self
.
_sparse_data_var
.
append
(
l
)
dataset_class
=
envs
.
get_global_env
(
"dataset_class"
,
None
,
#dataset_class = dataset["type"]#
envs.get_global_env("dataset_class", None,
"train.reader"
)
#
"train.reader")
if
dataset_class
==
"DataLoader"
:
#
if dataset_class == "DataLoader":
self
.
_init_dataloader
()
#
self._init_dataloader()
def
_init_dataloader
(
self
):
def
_init_dataloader
(
self
):
#print(self._data_var)
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
self
.
_data_loader
=
fluid
.
io
.
DataLoader
.
from_generator
(
feed_list
=
self
.
_data_var
,
feed_list
=
self
.
_data_var
,
capacity
=
64
,
capacity
=
64
,
...
@@ -131,7 +149,6 @@ class Model(object):
...
@@ -131,7 +149,6 @@ class Model(object):
None
,
self
.
_namespace
)
None
,
self
.
_namespace
)
optimizer
=
envs
.
get_global_env
(
"hyper_parameters.optimizer"
,
None
,
optimizer
=
envs
.
get_global_env
(
"hyper_parameters.optimizer"
,
None
,
self
.
_namespace
)
self
.
_namespace
)
print
(
">>>>>>>>>>>.learnig rate: %s"
%
learning_rate
)
return
self
.
_build_optimizer
(
optimizer
,
learning_rate
)
return
self
.
_build_optimizer
(
optimizer
,
learning_rate
)
def
input_data
(
self
,
is_infer
=
False
,
**
kwargs
):
def
input_data
(
self
,
is_infer
=
False
,
**
kwargs
):
...
...
core/reader.py
浏览文件 @
03dfc413
...
@@ -35,8 +35,6 @@ class Reader(dg.MultiSlotDataGenerator):
...
@@ -35,8 +35,6 @@ class Reader(dg.MultiSlotDataGenerator):
else
:
else
:
raise
ValueError
(
"reader config only support yaml"
)
raise
ValueError
(
"reader config only support yaml"
)
envs
.
set_global_envs
(
_config
)
envs
.
update_workspace
()
@
abc
.
abstractmethod
@
abc
.
abstractmethod
def
init
(
self
):
def
init
(
self
):
...
@@ -63,7 +61,11 @@ class SlotReader(dg.MultiSlotDataGenerator):
...
@@ -63,7 +61,11 @@ class SlotReader(dg.MultiSlotDataGenerator):
def
init
(
self
,
sparse_slots
,
dense_slots
,
padding
=
0
):
def
init
(
self
,
sparse_slots
,
dense_slots
,
padding
=
0
):
from
operator
import
mul
from
operator
import
mul
self
.
sparse_slots
=
[]
if
sparse_slots
.
strip
()
!=
"#"
:
self
.
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
self
.
sparse_slots
=
sparse_slots
.
strip
().
split
(
" "
)
self
.
dense_slots
=
[]
if
dense_slots
.
strip
()
!=
"#"
:
self
.
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
self
.
dense_slots
=
dense_slots
.
strip
().
split
(
" "
)
self
.
dense_slots_shape
=
[
self
.
dense_slots_shape
=
[
reduce
(
mul
,
reduce
(
mul
,
...
...
core/trainers/single_auc_yamlopt.py
已删除
100755 → 0
浏览文件 @
e8d99992
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""
from
__future__
import
print_function
import
time
import
logging
import
os
import
paddle.fluid
as
fluid
from
paddlerec.core.trainers.transpiler_trainer
import
TranspileTrainer
from
paddlerec.core.utils
import
envs
from
paddlerec.core.reader
import
SlotReader
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
class
SingleAucYamlOpt
(
TranspileTrainer
):
def
__init__
(
self
,
config
=
None
):
super
(
TranspileTrainer
,
self
).
__init__
(
config
)
self
.
_env
=
self
.
_config
device
=
envs
.
get_global_env
(
"device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
self
.
processor_register
()
self
.
_model
=
{}
self
.
_dataset
=
{}
envs
.
set_global_envs
(
self
.
_config
)
envs
.
update_workspace
()
def
processor_register
(
self
):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
executor_train
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
instance
(
self
,
context
):
context
[
'status'
]
=
'init_pass'
def
_create_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_type
=
envs
.
get_global_env
(
name
+
"type"
)
if
envs
.
get_platform
()
!=
"LINUX"
:
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
reader_type
=
"DataLoader"
padding
=
0
reader
=
envs
.
path_adapter
(
"paddlerec.core.utils"
)
+
"/dataset_instance.py"
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
"fake"
,
\
sparse_slots
.
replace
(
" "
,
"#"
),
dense_slots
.
replace
(
" "
,
"#"
),
str
(
padding
))
type_name
=
envs
.
get_global_env
(
name
+
"type"
)
if
type_name
==
"QueueDataset"
:
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
envs
.
get_global_env
(
name
+
"batch_size"
))
dataset
.
set_pipe_command
(
pipe_cmd
)
train_data_path
=
envs
.
get_global_env
(
name
+
"data_path"
)
file_list
=
[
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
dataset
.
set_filelist
(
file_list
)
for
model_dict
in
self
.
_env
[
"executor"
]:
if
model_dict
[
"dataset_name"
]
==
dataset_name
:
model
=
self
.
_model
[
model_dict
[
"name"
]][
3
]
inputs
=
model
.
get_inputs
()
dataset
.
set_use_var
(
inputs
)
break
else
:
pass
return
dataset
def
init
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"executor"
]:
self
.
_model
[
model_dict
[
"name"
]]
=
[
None
]
*
4
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
model
.
net
(
None
,
is_infer
=
True
)
optimizer
=
model
.
_build_optimizer
(
opt_name
,
opt_lr
,
opt_strategy
)
optimizer
.
minimize
(
model
.
_cost
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
self
.
_model
[
model_dict
[
"name"
]][
1
]
=
startup_program
self
.
_model
[
model_dict
[
"name"
]][
2
]
=
scope
self
.
_model
[
model_dict
[
"name"
]][
3
]
=
model
for
dataset
in
self
.
_env
[
"dataset"
]:
self
.
_dataset
[
dataset
[
"name"
]]
=
self
.
_create_dataset
(
dataset
[
"name"
])
context
[
'status'
]
=
'startup_pass'
def
startup
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"executor"
]:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
self
.
_exe
.
run
(
self
.
_model
[
model_dict
[
"name"
]][
1
])
context
[
'status'
]
=
'train_pass'
def
executor_train
(
self
,
context
):
epochs
=
int
(
self
.
_env
[
"epochs"
])
for
j
in
range
(
epochs
):
for
model_dict
in
self
.
_env
[
"executor"
]:
reader_name
=
model_dict
[
"dataset_name"
]
name
=
"dataset."
+
reader_name
+
"."
begin_time
=
time
.
time
()
if
envs
.
get_global_env
(
name
+
"type"
)
==
"DataLoader"
:
self
.
_executor_dataloader_train
(
model_dict
)
else
:
self
.
_executor_dataset_train
(
model_dict
)
end_time
=
time
.
time
()
seconds
=
end_time
-
begin_time
print
(
"epoch {} done, time elasped: {}"
.
format
(
j
,
seconds
))
context
[
'status'
]
=
"terminal_pass"
def
_executor_dataset_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
20
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
scope
=
self
.
_model
[
model_name
][
2
]
program
=
self
.
_model
[
model_name
][
0
]
reader
=
self
.
_dataset
[
reader_name
]
with
fluid
.
scope_guard
(
scope
):
self
.
_exe
.
train_from_dataset
(
program
=
program
,
dataset
=
reader
,
fetch_list
=
fetch_vars
,
fetch_info
=
fetch_alias
,
print_period
=
fetch_period
)
def
_executor_dataloader_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
self
.
_model
[
model_name
][
1
]
=
fluid
.
compiler
.
CompiledProgram
(
self
.
_model
[
model_name
][
1
]).
with_data_parallel
(
loss_name
=
model_class
.
get_avg_cost
().
name
)
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
20
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
metrics_varnames
=
[]
metrics_format
=
[]
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"epoch"
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
for
name
,
var
in
model_class
.
items
():
metrics_varnames
.
append
(
var
.
name
)
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
reader
=
self
.
_dataset
[
reader_name
]
reader
.
start
()
batch_id
=
0
scope
=
self
.
_model
[
model_name
][
2
]
prorgram
=
self
.
_model
[
model_name
][
0
]
with
fluid
.
scope_guard
(
scope
):
try
:
while
True
:
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
fetch_list
=
metrics_varnames
)
metrics
=
[
epoch
,
batch_id
]
metrics
.
extend
(
metrics_rets
)
if
batch_id
%
self
.
fetch_period
==
0
and
batch_id
!=
0
:
print
(
metrics_format
.
format
(
*
metrics
))
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
reader
.
reset
()
def
terminal
(
self
,
context
):
context
[
'is_exit'
]
=
True
core/trainers/single_trainer.py
浏览文件 @
03dfc413
...
@@ -19,83 +19,263 @@ from __future__ import print_function
...
@@ -19,83 +19,263 @@ from __future__ import print_function
import
time
import
time
import
logging
import
logging
import
os
import
paddle.fluid
as
fluid
import
paddle.fluid
as
fluid
from
paddlerec.core.trainers.transpiler_trainer
import
TranspileTrainer
from
paddlerec.core.trainers.transpiler_trainer
import
TranspileTrainer
from
paddlerec.core.utils
import
envs
from
paddlerec.core.utils
import
envs
from
paddlerec.core.reader
import
SlotReader
from
paddlerec.core.utils
import
dataloader_instance
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
logger
.
setLevel
(
logging
.
INFO
)
class
SingleTrainer
(
TranspileTrainer
):
class
SingleTrainerYamlOpt
(
TranspileTrainer
):
def
__init__
(
self
,
config
=
None
):
super
(
TranspileTrainer
,
self
).
__init__
(
config
)
self
.
_env
=
self
.
_config
device
=
envs
.
get_global_env
(
"device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
self
.
processor_register
()
self
.
_model
=
{}
self
.
_dataset
=
{}
envs
.
set_global_envs
(
self
.
_config
)
envs
.
update_workspace
()
def
processor_register
(
self
):
def
processor_register
(
self
):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
executor_train
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
instance
(
self
,
context
):
context
[
'status'
]
=
'init_pass'
def
_get_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
"data_convertor"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
reader
=
os
.
path
.
join
(
abs_dir
,
'../utils'
,
'dataset_instance.py'
)
if
sparse_slots
is
None
and
dense_slots
is
None
:
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
"fake"
,
self
.
_config_yaml
)
if
envs
.
get_platform
()
==
"LINUX"
and
envs
.
get_global_env
(
"dataset_class"
,
None
,
"train.reader"
)
!=
"DataLoader"
:
self
.
regist_context_processor
(
'train_pass'
,
self
.
dataset_train
)
else
:
else
:
self
.
regist_context_processor
(
'train_pass'
,
self
.
dataloader_train
)
if
sparse_slots
is
None
:
sparse_slots
=
"#"
if
dense_slots
is
None
:
dense_slots
=
"#"
padding
=
envs
.
get_global_env
(
name
+
"padding"
,
0
)
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
"fake"
,
\
sparse_slots
.
replace
(
" "
,
"#"
),
dense_slots
.
replace
(
" "
,
"#"
),
str
(
padding
))
self
.
regist_context_processor
(
'infer_pass'
,
self
.
infer
)
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
dataset
.
set_batch_size
(
envs
.
get_global_env
(
name
+
"batch_size"
))
dataset
.
set_pipe_command
(
pipe_cmd
)
train_data_path
=
envs
.
get_global_env
(
name
+
"data_path"
)
file_list
=
[
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
dataset
.
set_filelist
(
file_list
)
for
model_dict
in
self
.
_env
[
"executor"
]:
if
model_dict
[
"dataset_name"
]
==
dataset_name
:
model
=
self
.
_model
[
model_dict
[
"name"
]][
3
]
inputs
=
model
.
get_inputs
()
dataset
.
set_use_var
(
inputs
)
break
return
dataset
def
init
(
self
,
context
):
def
_get_dataloader
(
self
,
dataset_name
):
self
.
model
.
train_net
()
name
=
"dataset."
+
dataset_name
+
"."
optimizer
=
self
.
model
.
optimizer
()
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
optimizer
.
minimize
((
self
.
model
.
get_avg_cost
()))
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_class
=
envs
.
get_global_env
(
"data_convertor"
)
abs_dir
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
#reader = os.path.join(abs_dir, '../utils', 'dataset_instance.py')
if
sparse_slots
is
None
and
dense_slots
is
None
:
#reader_class = envs.get_global_env("class")
reader
=
dataloader_instance
.
dataloader_by_name
(
reader_class
,
dataset_name
,
self
.
_config_yaml
)
reader_class
=
envs
.
lazy_instance_by_fliename
(
reader_class
,
"TrainReader"
)
reader_ins
=
reader_class
(
self
.
_config_yaml
)
else
:
reader
=
dataloader_instance
.
slotdataloader_by_name
(
""
,
dataset_name
,
self
.
_config_yaml
)
reader_ins
=
SlotReader
(
self
.
_config_yaml
)
if
hasattr
(
reader_ins
,
'generate_batch_from_trainfiles'
):
dataloader
.
set_sample_list_generator
(
reader
)
else
:
dataloader
.
set_sample_generator
(
reader
,
batch_size
)
return
dataloader
self
.
fetch_vars
=
[]
self
.
fetch_alias
=
[]
self
.
fetch_period
=
self
.
model
.
get_fetch_period
()
metrics
=
self
.
model
.
get_metrics
()
def
_create_dataset
(
self
,
dataset_name
):
if
metrics
:
name
=
"dataset."
+
dataset_name
+
"."
self
.
fetch_vars
=
metrics
.
values
()
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
self
.
fetch_alias
=
metrics
.
keys
()
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
evaluate_only
=
envs
.
get_global_env
(
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
'evaluate_only'
,
False
,
namespace
=
'evaluate'
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
if
evaluate_only
:
type_name
=
envs
.
get_global_env
(
name
+
"type"
)
context
[
'status'
]
=
'infer_pass'
if
envs
.
get_platform
()
!=
"LINUX"
:
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
type_name
=
"DataLoader"
padding
=
0
if
type_name
==
"DataLoader"
:
return
None
#self._get_dataloader(dataset_name)
else
:
return
self
.
_get_dataset
(
dataset_name
)
reader
=
envs
.
path_adapter
(
"paddlerec.core.utils"
)
+
"/dataset_instance.py"
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
"fake"
,
\
sparse_slots
.
replace
(
" "
,
"#"
),
dense_slots
.
replace
(
" "
,
"#"
),
str
(
padding
))
if
type_name
==
"QueueDataset"
:
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
envs
.
get_global_env
(
name
+
"batch_size"
))
dataset
.
set_pipe_command
(
pipe_cmd
)
train_data_path
=
envs
.
get_global_env
(
name
+
"data_path"
)
file_list
=
[
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
dataset
.
set_filelist
(
file_list
)
for
model_dict
in
self
.
_env
[
"executor"
]:
if
model_dict
[
"dataset_name"
]
==
dataset_name
:
model
=
self
.
_model
[
model_dict
[
"name"
]][
3
]
inputs
=
model
.
get_inputs
()
dataset
.
set_use_var
(
inputs
)
break
else
:
else
:
pass
return
dataset
def
init
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"executor"
]:
self
.
_model
[
model_dict
[
"name"
]]
=
[
None
]
*
4
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
dataset_name
=
model_dict
[
"dataset_name"
]
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
#model._init_slots(name=model_dict["name"])
if
envs
.
get_global_env
(
"dataset."
+
dataset_name
+
".type"
)
==
"DataLoader"
:
model
.
_init_dataloader
()
model
.
net
(
model
.
_data_var
)
optimizer
=
model
.
_build_optimizer
(
opt_name
,
opt_lr
,
opt_strategy
)
optimizer
.
minimize
(
model
.
_cost
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
self
.
_model
[
model_dict
[
"name"
]][
1
]
=
startup_program
self
.
_model
[
model_dict
[
"name"
]][
2
]
=
scope
self
.
_model
[
model_dict
[
"name"
]][
3
]
=
model
for
dataset
in
self
.
_env
[
"dataset"
]:
if
dataset
[
"type"
]
!=
"DataLoader"
:
self
.
_dataset
[
dataset
[
"name"
]]
=
self
.
_create_dataset
(
dataset
[
"name"
])
context
[
'status'
]
=
'startup_pass'
context
[
'status'
]
=
'startup_pass'
def
startup
(
self
,
context
):
def
startup
(
self
,
context
):
self
.
_exe
.
run
(
fluid
.
default_startup_program
())
for
model_dict
in
self
.
_env
[
"executor"
]:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
self
.
_exe
.
run
(
self
.
_model
[
model_dict
[
"name"
]][
1
])
context
[
'status'
]
=
'train_pass'
context
[
'status'
]
=
'train_pass'
def
dataloader_train
(
self
,
context
):
def
executor_train
(
self
,
context
):
reader
=
self
.
_get_dataloader
(
"TRAIN"
)
epochs
=
int
(
self
.
_env
[
"epochs"
])
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
for
j
in
range
(
epochs
):
for
model_dict
in
self
.
_env
[
"executor"
]:
reader_name
=
model_dict
[
"dataset_name"
]
name
=
"dataset."
+
reader_name
+
"."
begin_time
=
time
.
time
()
if
envs
.
get_global_env
(
name
+
"type"
)
==
"DataLoader"
:
self
.
_executor_dataloader_train
(
model_dict
)
else
:
self
.
_executor_dataset_train
(
model_dict
)
end_time
=
time
.
time
()
seconds
=
end_time
-
begin_time
print
(
"epoch {} done, time elasped: {}"
.
format
(
j
,
seconds
))
context
[
'status'
]
=
"terminal_pass"
def
_executor_dataset_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
20
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
scope
=
self
.
_model
[
model_name
][
2
]
program
=
self
.
_model
[
model_name
][
0
]
reader
=
self
.
_dataset
[
reader_name
]
with
fluid
.
scope_guard
(
scope
):
self
.
_exe
.
train_from_dataset
(
program
=
program
,
dataset
=
reader
,
fetch_list
=
fetch_vars
,
fetch_info
=
fetch_alias
,
print_period
=
fetch_period
)
program
=
fluid
.
compiler
.
CompiledProgram
(
fluid
.
default_main_program
(
)).
with_data_parallel
(
loss_name
=
self
.
model
.
get_avg_cost
().
name
)
def
_executor_dataloader_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
self
.
_model
[
model_name
][
0
]
=
fluid
.
compiler
.
CompiledProgram
(
self
.
_model
[
model_name
][
0
]).
with_data_parallel
(
loss_name
=
model_class
.
get_avg_cost
().
name
)
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
20
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
metrics_varnames
=
[]
metrics_varnames
=
[]
metrics_format
=
[]
metrics_format
=
[]
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"epoch"
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"epoch"
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
for
name
,
var
in
model_class
.
get_metrics
().
items
():
for
name
,
var
in
self
.
model
.
get_metrics
().
items
():
metrics_varnames
.
append
(
var
.
name
)
metrics_varnames
.
append
(
var
.
name
)
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
metrics_format
=
", "
.
join
(
metrics_format
)
for
epoch
in
range
(
epochs
):
reader
=
self
.
_model
[
model_name
][
3
].
_data_loader
reader
.
start
()
reader
.
start
()
batch_id
=
0
batch_id
=
0
scope
=
self
.
_model
[
model_name
][
2
]
program
=
self
.
_model
[
model_name
][
0
]
#print(metrics_varnames)
with
fluid
.
scope_guard
(
scope
):
try
:
try
:
while
True
:
while
True
:
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
fetch_list
=
metrics_varnames
)
fetch_list
=
metrics_varnames
)
metrics
=
[
epoch
,
batch_id
]
metrics
=
[
epoch
,
batch_id
]
metrics
.
extend
(
metrics_rets
)
metrics
.
extend
(
metrics_rets
)
...
@@ -104,32 +284,6 @@ class SingleTrainer(TranspileTrainer):
...
@@ -104,32 +284,6 @@ class SingleTrainer(TranspileTrainer):
batch_id
+=
1
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
except
fluid
.
core
.
EOFException
:
reader
.
reset
()
reader
.
reset
()
self
.
save
(
epoch
,
"train"
,
is_fleet
=
False
)
context
[
'status'
]
=
'infer_pass'
def
dataset_train
(
self
,
context
):
dataset
=
self
.
_get_dataset
(
"TRAIN"
)
ins
=
self
.
_get_dataset_ins
()
epochs
=
envs
.
get_global_env
(
"train.epochs"
)
for
i
in
range
(
epochs
):
begin_time
=
time
.
time
()
self
.
_exe
.
train_from_dataset
(
program
=
fluid
.
default_main_program
(),
dataset
=
dataset
,
fetch_list
=
self
.
fetch_vars
,
fetch_info
=
self
.
fetch_alias
,
print_period
=
self
.
fetch_period
)
end_time
=
time
.
time
()
times
=
end_time
-
begin_time
print
(
"epoch {} using time {}, speed {:.2f} lines/s"
.
format
(
i
,
times
,
ins
/
times
))
self
.
save
(
i
,
"train"
,
is_fleet
=
False
)
context
[
'status'
]
=
'infer_pass'
def
terminal
(
self
,
context
):
def
terminal
(
self
,
context
):
for
model
in
self
.
increment_models
:
print
(
"epoch :{}, dir: {}"
.
format
(
model
[
0
],
model
[
1
]))
context
[
'is_exit'
]
=
True
context
[
'is_exit'
]
=
True
core/trainers/single_trainer_yamlopt.py
已删除
100755 → 0
浏览文件 @
e8d99992
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Training use fluid with one node only.
"""
from
__future__
import
print_function
import
time
import
logging
import
os
import
paddle.fluid
as
fluid
from
paddlerec.core.trainers.transpiler_trainer
import
TranspileTrainer
from
paddlerec.core.utils
import
envs
from
paddlerec.core.reader
import
SlotReader
logging
.
basicConfig
(
format
=
"%(asctime)s - %(levelname)s - %(message)s"
)
logger
=
logging
.
getLogger
(
"fluid"
)
logger
.
setLevel
(
logging
.
INFO
)
class
SingleTrainerYamlOpt
(
TranspileTrainer
):
def
__init__
(
self
,
config
=
None
):
super
(
TranspileTrainer
,
self
).
__init__
(
config
)
self
.
_env
=
self
.
_config
device
=
envs
.
get_global_env
(
"device"
)
if
device
==
'gpu'
:
self
.
_place
=
fluid
.
CUDAPlace
(
0
)
elif
device
==
'cpu'
:
self
.
_place
=
fluid
.
CPUPlace
()
self
.
_exe
=
fluid
.
Executor
(
self
.
_place
)
self
.
processor_register
()
self
.
_model
=
{}
self
.
_dataset
=
{}
envs
.
set_global_envs
(
self
.
_config
)
envs
.
update_workspace
()
def
processor_register
(
self
):
self
.
regist_context_processor
(
'uninit'
,
self
.
instance
)
self
.
regist_context_processor
(
'init_pass'
,
self
.
init
)
self
.
regist_context_processor
(
'startup_pass'
,
self
.
startup
)
self
.
regist_context_processor
(
'train_pass'
,
self
.
executor_train
)
self
.
regist_context_processor
(
'terminal_pass'
,
self
.
terminal
)
def
instance
(
self
,
context
):
context
[
'status'
]
=
'init_pass'
def
_create_dataset
(
self
,
dataset_name
):
name
=
"dataset."
+
dataset_name
+
"."
sparse_slots
=
envs
.
get_global_env
(
name
+
"sparse_slots"
)
dense_slots
=
envs
.
get_global_env
(
name
+
"dense_slots"
)
thread_num
=
envs
.
get_global_env
(
name
+
"thread_num"
)
batch_size
=
envs
.
get_global_env
(
name
+
"batch_size"
)
reader_type
=
envs
.
get_global_env
(
name
+
"type"
)
if
envs
.
get_platform
()
!=
"LINUX"
:
print
(
"platform "
,
envs
.
get_platform
(),
" change reader to DataLoader"
)
reader_type
=
"DataLoader"
padding
=
0
reader
=
envs
.
path_adapter
(
"paddlerec.core.utils"
)
+
"/dataset_instance.py"
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
"fake"
,
\
sparse_slots
.
replace
(
" "
,
"#"
),
dense_slots
.
replace
(
" "
,
"#"
),
str
(
padding
))
type_name
=
envs
.
get_global_env
(
name
+
"type"
)
if
type_name
==
"QueueDataset"
:
dataset
=
fluid
.
DatasetFactory
().
create_dataset
()
dataset
.
set_batch_size
(
envs
.
get_global_env
(
name
+
"batch_size"
))
dataset
.
set_pipe_command
(
pipe_cmd
)
train_data_path
=
envs
.
get_global_env
(
name
+
"data_path"
)
file_list
=
[
os
.
path
.
join
(
train_data_path
,
x
)
for
x
in
os
.
listdir
(
train_data_path
)
]
dataset
.
set_filelist
(
file_list
)
for
model_dict
in
self
.
_env
[
"executor"
]:
if
model_dict
[
"dataset_name"
]
==
dataset_name
:
model
=
self
.
_model
[
model_dict
[
"name"
]][
3
]
inputs
=
model
.
get_inputs
()
dataset
.
set_use_var
(
inputs
)
break
else
:
pass
return
dataset
def
init
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"executor"
]:
self
.
_model
[
model_dict
[
"name"
]]
=
[
None
]
*
4
train_program
=
fluid
.
Program
()
startup_program
=
fluid
.
Program
()
scope
=
fluid
.
Scope
()
opt_name
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.class"
)
opt_lr
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.learning_rate"
)
opt_strategy
=
envs
.
get_global_env
(
"hyper_parameters.optimizer.strategy"
)
with
fluid
.
program_guard
(
train_program
,
startup_program
):
with
fluid
.
unique_name
.
guard
():
model_path
=
model_dict
[
"model"
].
replace
(
"{workspace}"
,
envs
.
path_adapter
(
self
.
_env
[
"workspace"
]))
model
=
envs
.
lazy_instance_by_fliename
(
model_path
,
"Model"
)(
self
.
_env
)
model
.
_data_var
=
model
.
input_data
(
dataset_name
=
model_dict
[
"dataset_name"
])
model
.
net
(
None
)
optimizer
=
model
.
_build_optimizer
(
opt_name
,
opt_lr
,
opt_strategy
)
optimizer
.
minimize
(
model
.
_cost
)
self
.
_model
[
model_dict
[
"name"
]][
0
]
=
train_program
self
.
_model
[
model_dict
[
"name"
]][
1
]
=
startup_program
self
.
_model
[
model_dict
[
"name"
]][
2
]
=
scope
self
.
_model
[
model_dict
[
"name"
]][
3
]
=
model
for
dataset
in
self
.
_env
[
"dataset"
]:
self
.
_dataset
[
dataset
[
"name"
]]
=
self
.
_create_dataset
(
dataset
[
"name"
])
context
[
'status'
]
=
'startup_pass'
def
startup
(
self
,
context
):
for
model_dict
in
self
.
_env
[
"executor"
]:
with
fluid
.
scope_guard
(
self
.
_model
[
model_dict
[
"name"
]][
2
]):
self
.
_exe
.
run
(
self
.
_model
[
model_dict
[
"name"
]][
1
])
context
[
'status'
]
=
'train_pass'
def
executor_train
(
self
,
context
):
epochs
=
int
(
self
.
_env
[
"epochs"
])
for
j
in
range
(
epochs
):
for
model_dict
in
self
.
_env
[
"executor"
]:
reader_name
=
model_dict
[
"dataset_name"
]
name
=
"dataset."
+
reader_name
+
"."
begin_time
=
time
.
time
()
if
envs
.
get_global_env
(
name
+
"type"
)
==
"DataLoader"
:
self
.
_executor_dataloader_train
(
model_dict
)
else
:
self
.
_executor_dataset_train
(
model_dict
)
end_time
=
time
.
time
()
seconds
=
end_time
-
begin_time
print
(
"epoch {} done, time elasped: {}"
.
format
(
j
,
seconds
))
context
[
'status'
]
=
"terminal_pass"
def
_executor_dataset_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
20
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
scope
=
self
.
_model
[
model_name
][
2
]
program
=
self
.
_model
[
model_name
][
0
]
reader
=
self
.
_dataset
[
reader_name
]
with
fluid
.
scope_guard
(
scope
):
self
.
_exe
.
train_from_dataset
(
program
=
program
,
dataset
=
reader
,
fetch_list
=
fetch_vars
,
fetch_info
=
fetch_alias
,
print_period
=
fetch_period
)
def
_executor_dataloader_train
(
self
,
model_dict
):
reader_name
=
model_dict
[
"dataset_name"
]
model_name
=
model_dict
[
"name"
]
model_class
=
self
.
_model
[
model_name
][
3
]
self
.
_model
[
model_name
][
1
]
=
fluid
.
compiler
.
CompiledProgram
(
self
.
_model
[
model_name
][
1
]).
with_data_parallel
(
loss_name
=
model_class
.
get_avg_cost
().
name
)
fetch_vars
=
[]
fetch_alias
=
[]
fetch_period
=
20
metrics
=
model_class
.
get_metrics
()
if
metrics
:
fetch_vars
=
metrics
.
values
()
fetch_alias
=
metrics
.
keys
()
metrics_varnames
=
[]
metrics_format
=
[]
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"epoch"
))
metrics_format
.
append
(
"{}: {{}}"
.
format
(
"batch"
))
for
name
,
var
in
model_class
.
items
():
metrics_varnames
.
append
(
var
.
name
)
metrics_format
.
append
(
"{}: {{}}"
.
format
(
name
))
metrics_format
=
", "
.
join
(
metrics_format
)
reader
=
self
.
_dataset
[
reader_name
]
reader
.
start
()
batch_id
=
0
scope
=
self
.
_model
[
model_name
][
2
]
prorgram
=
self
.
_model
[
model_name
][
0
]
with
fluid
.
scope_guard
(
scope
):
try
:
while
True
:
metrics_rets
=
self
.
_exe
.
run
(
program
=
program
,
fetch_list
=
metrics_varnames
)
metrics
=
[
epoch
,
batch_id
]
metrics
.
extend
(
metrics_rets
)
if
batch_id
%
self
.
fetch_period
==
0
and
batch_id
!=
0
:
print
(
metrics_format
.
format
(
*
metrics
))
batch_id
+=
1
except
fluid
.
core
.
EOFException
:
reader
.
reset
()
def
terminal
(
self
,
context
):
context
[
'is_exit'
]
=
True
core/trainers/transpiler_trainer.py
浏览文件 @
03dfc413
...
@@ -119,6 +119,10 @@ class TranspileTrainer(Trainer):
...
@@ -119,6 +119,10 @@ class TranspileTrainer(Trainer):
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
state
,
pipe_cmd
=
"python {} {} {} {}"
.
format
(
reader
,
reader_class
,
state
,
self
.
_config_yaml
)
self
.
_config_yaml
)
else
:
else
:
if
sparse_slots
is
None
:
sparse_slots
=
"#"
if
dense_slots
is
None
:
dense_slots
=
"#"
padding
=
envs
.
get_global_env
(
"padding"
,
0
,
namespace
)
padding
=
envs
.
get_global_env
(
"padding"
,
0
,
namespace
)
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
pipe_cmd
=
"python {} {} {} {} {} {} {} {}"
.
format
(
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
namespace
,
\
reader
,
"slot"
,
"slot"
,
self
.
_config_yaml
,
namespace
,
\
...
...
core/utils/dataloader_instance.py
浏览文件 @
03dfc413
...
@@ -14,12 +14,102 @@
...
@@ -14,12 +14,102 @@
from
__future__
import
print_function
from
__future__
import
print_function
import
os
import
os
from
paddlerec.core.utils.envs
import
lazy_instance_by_fliename
from
paddlerec.core.utils.envs
import
lazy_instance_by_fliename
from
paddlerec.core.utils.envs
import
get_global_env
from
paddlerec.core.utils.envs
import
get_global_env
from
paddlerec.core.utils.envs
import
get_runtime_environ
from
paddlerec.core.utils.envs
import
get_runtime_environ
from
paddlerec.core.reader
import
SlotReader
from
paddlerec.core.reader
import
SlotReader
def
dataloader_by_name
(
readerclass
,
dataset_name
,
yaml_file
):
reader_class
=
lazy_instance_by_fliename
(
readerclass
,
"TrainReader"
)
name
=
"dataset."
+
dataset_name
+
"."
data_path
=
get_global_env
(
name
+
"data_path"
)
#else:
# reader_name = "SlotReader"
# namespace = "evaluate.reader"
# data_path = get_global_env("test_data_path", None, namespace)
if
data_path
.
startswith
(
"paddlerec::"
):
package_base
=
get_runtime_environ
(
"PACKAGE_BASE"
)
assert
package_base
is
not
None
data_path
=
os
.
path
.
join
(
package_base
,
data_path
.
split
(
"::"
)[
1
])
files
=
[
str
(
data_path
)
+
"/%s"
%
x
for
x
in
os
.
listdir
(
data_path
)]
reader
=
reader_class
(
yaml_file
)
reader
.
init
()
def
gen_reader
():
for
file
in
files
:
with
open
(
file
,
'r'
)
as
f
:
for
line
in
f
:
line
=
line
.
rstrip
(
'
\n
'
)
iter
=
reader
.
generate_sample
(
line
)
for
parsed_line
in
iter
():
if
parsed_line
is
None
:
continue
else
:
values
=
[]
for
pased
in
parsed_line
:
values
.
append
(
pased
[
1
])
yield
values
def
gen_batch_reader
():
return
reader
.
generate_batch_from_trainfiles
(
files
)
if
hasattr
(
reader
,
'generate_batch_from_trainfiles'
):
return
gen_batch_reader
()
return
gen_reader
def
slotdataloader_by_name
(
readerclass
,
dataset_name
,
yaml_file
):
name
=
"dataset."
+
dataset_name
+
"."
#if train == "TRAIN":
reader_name
=
"SlotReader"
# namespace = "train.reader"
print
(
name
)
data_path
=
get_global_env
(
name
+
"data_path"
)
#else:
# reader_name = "SlotReader"
# namespace = "evaluate.reader"
# data_path = get_global_env("test_data_path", None, namespace)
if
data_path
.
startswith
(
"paddlerec::"
):
package_base
=
get_runtime_environ
(
"PACKAGE_BASE"
)
assert
package_base
is
not
None
data_path
=
os
.
path
.
join
(
package_base
,
data_path
.
split
(
"::"
)[
1
])
files
=
[
str
(
data_path
)
+
"/%s"
%
x
for
x
in
os
.
listdir
(
data_path
)]
#sparse = get_global_env("sparse_slots", None, namespace)
#dense = get_global_env("dense_slots", None, namespace)
#padding = get_global_env("padding", 0, namespace)
#name = "dataset." + dataset_name + "."
sparse
=
get_global_env
(
name
+
"sparse_slots"
)
dense
=
get_global_env
(
name
+
"dense_slots"
)
padding
=
get_global_env
(
name
+
"padding"
,
0
)
reader
=
SlotReader
(
yaml_file
)
reader
.
init
(
sparse
,
dense
,
int
(
padding
))
def
gen_reader
():
for
file
in
files
:
with
open
(
file
,
'r'
)
as
f
:
for
line
in
f
:
line
=
line
.
rstrip
(
'
\n
'
)
iter
=
reader
.
generate_sample
(
line
)
for
parsed_line
in
iter
():
if
parsed_line
is
None
:
continue
else
:
values
=
[]
for
pased
in
parsed_line
:
values
.
append
(
pased
[
1
])
yield
values
def
gen_batch_reader
():
return
reader
.
generate_batch_from_trainfiles
(
files
)
if
hasattr
(
reader
,
'generate_batch_from_trainfiles'
):
return
gen_batch_reader
()
return
gen_reader
def
dataloader
(
readerclass
,
train
,
yaml_file
):
def
dataloader
(
readerclass
,
train
,
yaml_file
):
if
train
==
"TRAIN"
:
if
train
==
"TRAIN"
:
...
...
core/utils/envs.py
浏览文件 @
03dfc413
...
@@ -80,8 +80,6 @@ def set_global_envs(envs):
...
@@ -80,8 +80,6 @@ def set_global_envs(envs):
global_envs
[
global_k
]
=
v
global_envs
[
global_k
]
=
v
fatten_env_namespace
([],
envs
)
fatten_env_namespace
([],
envs
)
for
i
in
global_envs
:
print
i
,
":"
,
global_envs
[
i
]
def
get_global_env
(
env_name
,
default_value
=
None
,
namespace
=
None
):
def
get_global_env
(
env_name
,
default_value
=
None
,
namespace
=
None
):
"""
"""
...
...
models/rank/dnn/config.yaml
浏览文件 @
03dfc413
...
@@ -21,7 +21,8 @@ workspace: "paddlerec.models.rank.dnn"
...
@@ -21,7 +21,8 @@ workspace: "paddlerec.models.rank.dnn"
dataset
:
dataset
:
-
name
:
dataset_2
-
name
:
dataset_2
batch_size
:
2
batch_size
:
2
type
:
QueueDataset
#type: QueueDataset
type
:
DataLoader
data_path
:
"
{workspace}/data/sample_data/train"
data_path
:
"
{workspace}/data/sample_data/train"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
sparse_slots
:
"
click
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26"
dense_slots
:
"
dense_var:13"
dense_slots
:
"
dense_var:13"
...
@@ -38,8 +39,8 @@ hyper_parameters:
...
@@ -38,8 +39,8 @@ hyper_parameters:
fc_sizes
:
[
512
,
256
,
128
,
32
]
fc_sizes
:
[
512
,
256
,
128
,
32
]
epoch
:
epoch
:
trainer_class
:
single_yamlopt
name
:
#trainer_class: single_auc_yamlopt
trainer_class
:
single
save_checkpoint_interval
:
2
save_checkpoint_interval
:
2
save_inference_interval
:
4
save_inference_interval
:
4
save_checkpoint_path
:
"
increment"
save_checkpoint_path
:
"
increment"
...
...
run.py
浏览文件 @
03dfc413
...
@@ -28,7 +28,7 @@ device = ["CPU", "GPU"]
...
@@ -28,7 +28,7 @@ device = ["CPU", "GPU"]
clusters
=
[
"SINGLE"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
]
clusters
=
[
"SINGLE"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
]
engine_choices
=
[
engine_choices
=
[
"SINGLE"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
,
"TDM_SINGLE"
,
"TDM_LOCAL_CLUSTER"
,
"SINGLE"
,
"LOCAL_CLUSTER"
,
"CLUSTER"
,
"TDM_SINGLE"
,
"TDM_LOCAL_CLUSTER"
,
"TDM_CLUSTER"
,
"SINGLE_YAMLOPT"
,
"SINGLE_AUC_YAMLOPT"
"TDM_CLUSTER"
]
]
custom_model
=
[
'TDM'
]
custom_model
=
[
'TDM'
]
model_name
=
""
model_name
=
""
...
@@ -41,10 +41,6 @@ def engine_registry():
...
@@ -41,10 +41,6 @@ def engine_registry():
engines
[
"TRANSPILER"
][
"SINGLE"
]
=
single_engine
engines
[
"TRANSPILER"
][
"SINGLE"
]
=
single_engine
engines
[
"TRANSPILER"
][
"LOCAL_CLUSTER"
]
=
local_cluster_engine
engines
[
"TRANSPILER"
][
"LOCAL_CLUSTER"
]
=
local_cluster_engine
engines
[
"TRANSPILER"
][
"CLUSTER"
]
=
cluster_engine
engines
[
"TRANSPILER"
][
"CLUSTER"
]
=
cluster_engine
engines
[
"TRANSPILER"
][
"SINGLE_YAMLOPT"
]
=
single_yamlopt_engine
engines
[
"TRANSPILER"
][
"SINGLE_AUC_YAMLOPT"
]
=
single_auc_yamlopt_engine
engines
[
"PSLIB"
][
"SINGLE"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"SINGLE"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"LOCAL_CLUSTER"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"LOCAL_CLUSTER"
]
=
local_mpi_engine
engines
[
"PSLIB"
][
"CLUSTER"
]
=
cluster_mpi_engine
engines
[
"PSLIB"
][
"CLUSTER"
]
=
cluster_mpi_engine
...
@@ -139,32 +135,6 @@ def single_engine(args):
...
@@ -139,32 +135,6 @@ def single_engine(args):
trainer
=
TrainerFactory
.
create
(
args
.
model
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
return
trainer
def
single_yamlopt_engine
(
args
):
trainer
=
get_trainer_prefix
(
args
)
+
"SingleTrainerYamlOpt"
single_envs
=
{}
single_envs
[
"train.trainer.trainer"
]
=
trainer
single_envs
[
"train.trainer.threads"
]
=
"2"
single_envs
[
"train.trainer.engine"
]
=
"single_yamlopt"
single_envs
[
"train.trainer.platform"
]
=
envs
.
get_platform
()
print
(
"use {} engine to run model: {}"
.
format
(
trainer
,
args
.
model
))
set_runtime_envs
(
single_envs
,
args
.
model
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
single_auc_yamlopt_engine
(
args
):
trainer
=
get_trainer_prefix
(
args
)
+
"SingleAucYamlOpt"
single_envs
=
{}
single_envs
[
"train.trainer.trainer"
]
=
trainer
single_envs
[
"train.trainer.threads"
]
=
"2"
single_envs
[
"train.trainer.engine"
]
=
"single_yamlopt"
single_envs
[
"train.trainer.platform"
]
=
envs
.
get_platform
()
print
(
"use {} engine to run model: {}"
.
format
(
trainer
,
args
.
model
))
set_runtime_envs
(
single_envs
,
args
.
model
)
trainer
=
TrainerFactory
.
create
(
args
.
model
)
return
trainer
def
cluster_engine
(
args
):
def
cluster_engine
(
args
):
def
update_workspace
(
cluster_envs
):
def
update_workspace
(
cluster_envs
):
workspace
=
cluster_envs
.
get
(
"engine_workspace"
,
None
)
workspace
=
cluster_envs
.
get
(
"engine_workspace"
,
None
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录