model.py 7.2 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import math

T
tangwei 已提交
17 18
import paddle.fluid as fluid

19 20
from paddlerec.core.utils import envs
from paddlerec.core.model import Model as ModelBase
21 22 23 24 25 26 27 28 29 30 31


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def deepfm_net(self):
        init_value_ = 0.1
        is_distributed = True if envs.get_trainer() == "CtrTrainer" else False
        sparse_feature_number = envs.get_global_env("hyper_parameters.sparse_feature_number", None, self._namespace)
        sparse_feature_dim = envs.get_global_env("hyper_parameters.sparse_feature_dim", None, self._namespace)
T
for mat  
tangwei 已提交
32

33
        # ------------------------- network input --------------------------
T
for mat  
tangwei 已提交
34

35
        num_field = envs.get_global_env("hyper_parameters.num_field", None, self._namespace)
T
for mat  
tangwei 已提交
36 37 38
        raw_feat_idx = fluid.data(name='feat_idx', shape=[None, num_field],
                                  dtype='int64')  # None * num_field(defalut:39)
        raw_feat_value = fluid.data(name='feat_value', shape=[None, num_field], dtype='float32')  # None * num_field
39
        self.label = fluid.data(name='label', shape=[None, 1], dtype='float32')  # None * 1
T
for mat  
tangwei 已提交
40
        feat_idx = fluid.layers.reshape(raw_feat_idx, [-1, 1])  # (None * num_field) * 1
41
        feat_value = fluid.layers.reshape(raw_feat_value, [-1, num_field, 1])  # None * num_field * 1
T
for mat  
tangwei 已提交
42

43
        # ------------------------- set _data_var --------------------------
T
for mat  
tangwei 已提交
44

45 46 47 48 49 50
        self._data_var.append(raw_feat_idx)
        self._data_var.append(raw_feat_value)
        self._data_var.append(self.label)
        if self._platform != "LINUX":
            self._data_loader = fluid.io.DataLoader.from_generator(
                feed_list=self._data_var, capacity=64, use_double_buffer=False, iterable=False)
T
for mat  
tangwei 已提交
51 52

        # ------------------------- first order term --------------------------
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

        reg = envs.get_global_env("hyper_parameters.reg", 1e-4, self._namespace)
        first_weights_re = fluid.embedding(
            input=feat_idx,
            is_sparse=True,
            is_distributed=is_distributed,
            dtype='float32',
            size=[sparse_feature_number + 1, 1],
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_),
                regularizer=fluid.regularizer.L1DecayRegularizer(reg)))
        first_weights = fluid.layers.reshape(
            first_weights_re, shape=[-1, num_field, 1])  # None * num_field * 1
        y_first_order = fluid.layers.reduce_sum((first_weights * feat_value), 1)

T
for mat  
tangwei 已提交
70
        # ------------------------- second order term --------------------------
71 72 73 74 75 76 77 78 79 80 81 82 83 84

        feat_embeddings_re = fluid.embedding(
            input=feat_idx,
            is_sparse=True,
            is_distributed=is_distributed,
            dtype='float32',
            size=[sparse_feature_number + 1, sparse_feature_dim],
            padding_idx=0,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_ / math.sqrt(float(sparse_feature_dim)))))
        feat_embeddings = fluid.layers.reshape(
            feat_embeddings_re,
            shape=[-1, num_field,
T
for mat  
tangwei 已提交
85
                   sparse_feature_dim])  # None * num_field * embedding_size
86
        feat_embeddings = feat_embeddings * feat_value  # None * num_field * embedding_size
T
for mat  
tangwei 已提交
87

88 89
        # sum_square part
        summed_features_emb = fluid.layers.reduce_sum(feat_embeddings,
T
for mat  
tangwei 已提交
90
                                                      1)  # None * embedding_size
91 92 93 94 95 96 97 98 99 100 101 102 103
        summed_features_emb_square = fluid.layers.square(
            summed_features_emb)  # None * embedding_size

        # square_sum part
        squared_features_emb = fluid.layers.square(
            feat_embeddings)  # None * num_field * embedding_size
        squared_sum_features_emb = fluid.layers.reduce_sum(
            squared_features_emb, 1)  # None * embedding_size

        y_second_order = 0.5 * fluid.layers.reduce_sum(
            summed_features_emb_square - squared_sum_features_emb, 1,
            keep_dim=True)  # None * 1

T
for mat  
tangwei 已提交
104
        # ------------------------- DNN --------------------------
105 106 107 108

        layer_sizes = envs.get_global_env("hyper_parameters.fc_sizes", None, self._namespace)
        act = envs.get_global_env("hyper_parameters.act", None, self._namespace)
        y_dnn = fluid.layers.reshape(feat_embeddings,
T
for mat  
tangwei 已提交
109
                                     [-1, num_field * sparse_feature_dim])
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
        for s in layer_sizes:
            y_dnn = fluid.layers.fc(
                input=y_dnn,
                size=s,
                act=act,
                param_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.TruncatedNormalInitializer(
                        loc=0.0, scale=init_value_ / math.sqrt(float(10)))),
                bias_attr=fluid.ParamAttr(
                    initializer=fluid.initializer.TruncatedNormalInitializer(
                        loc=0.0, scale=init_value_)))
        y_dnn = fluid.layers.fc(
            input=y_dnn,
            size=1,
            act=None,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_)),
            bias_attr=fluid.ParamAttr(
                initializer=fluid.initializer.TruncatedNormalInitializer(
                    loc=0.0, scale=init_value_)))
T
for mat  
tangwei 已提交
131 132

        # ------------------------- DeepFM --------------------------
133 134

        self.predict = fluid.layers.sigmoid(y_first_order + y_second_order + y_dnn)
T
for mat  
tangwei 已提交
135

136 137
    def train_net(self):
        self.deepfm_net()
T
for mat  
tangwei 已提交
138 139

        # ------------------------- Cost(logloss) --------------------------
140 141 142

        cost = fluid.layers.log_loss(input=self.predict, label=self.label)
        avg_cost = fluid.layers.reduce_sum(cost)
T
for mat  
tangwei 已提交
143

144 145
        self._cost = avg_cost

T
for mat  
tangwei 已提交
146 147
        # ------------------------- Metric(Auc) --------------------------

148 149 150
        predict_2d = fluid.layers.concat([1 - self.predict, self.predict], 1)
        label_int = fluid.layers.cast(self.label, 'int64')
        auc_var, batch_auc_var, _ = fluid.layers.auc(input=predict_2d,
T
for mat  
tangwei 已提交
151 152
                                                     label=label_int,
                                                     slide_steps=0)
153 154 155 156 157 158 159 160 161
        self._metrics["AUC"] = auc_var
        self._metrics["BATCH_AUC"] = batch_auc_var

    def optimizer(self):
        learning_rate = envs.get_global_env("hyper_parameters.learning_rate", None, self._namespace)
        optimizer = fluid.optimizer.Adam(learning_rate, lazy_mode=True)
        return optimizer

    def infer_net(self, parameter_list):
T
for mat  
tangwei 已提交
162
        self.deepfm_net()