README.md 4.7 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
# Overview

Imperative Programming is easier to learn, debug and try new ideas.

# Related Works

## Pytorch
https://pytorch.org/

## TensorFlow Eager
https://www.tensorflow.org/guide/eager

# Design

## API
```python
class Layer(object):

  def __call__(inputs):
    # build some parameter once.
    # ...
    return self.apply(inputs):

  def forward(inputs):
    # forward logic with paddle operators. backward auto-generated.


class PyLayer(core.PyLayer):

  def __call__(cls, inputs):
    # trace the logic.

  @staticmethod
  def forward(inputs):
    # any forward logic implemented with numpy io.

  @staticmethod
  def backward(inputs):
    # any backward logic implemented with numpy io.

```


## Tracer

Current: Python Variable -> C++ VarBase -> C++ Variable -> C++ Tensor

Longer term.
```python

# Parent class.
class PyVarBase(object):
  pass

# Current python variable.
class Variable(PyVarBase):
  pass

class IVariable(PyVarBase):
  def __init__(self):
    self._ivar = core.VarBase()

  # Move var to a device.
  def to(device): pass
  # Get var value.
  def value(): pass
  # Trigger backward.
  def backward(): pass
  # Get var's gradient value.
  def gradient_value(): pass
  # operators to override.
```



```cpp
class Tracer {
 public:
  explicit Tracer(framework::BlockDesc* root_block) : root_block_(root_block) {}

  virtual ~Tracer() {}

  void Trace(OpBase* op,
             const std::map<std::string, std::vector<VarBase*>>& inputs,
             const std::map<std::string, std::vector<VarBase*>>& outputs,
             framework::BlockDesc* block, const bool stop_gradient = false);

  std::vector<VarBase*> PyTrace(OpBase* op, const std::vector<VarBase*>& inputs,
                                bool stop_gradient = false);
};
```

* Trace forward operations
* Perform quick shape/type infer, push kernel execution engine and return to user.
* Perform autograd to generate gradients.
* Clear trace.
* Apply gradients with optimizers

## Autodiff

Lots of research already.
https://autodiff-workshop.github.io/
https://en.wikipedia.org/wiki/Automatic_differentiation

Basically, trace the forward execution, and perform autodiff
when needed.

* Can be triggered by `backward()`.
* Can select a block of code to trace and autodiff.
* Use `require_grad` to drop some forward subgraph that doesn't need autodiff.

## Execution Engine

Lazy execution of pushed C++ operations.

## Device Placement

* Operator executes on the inputs' device.
* All inputs should live on the same device.
* use `Var.to()` to explicitly move var to a device.

## Save/Load Models

TODO

## I/O

TODO

## Refactor

* All function layers with parameters converted to class Layers.
* Existing models converted to imperative mode.
* All op tests run once in static graph, once in imperative mode.

# Examples

```python
class MyLayer(fluid.imperative.Layer):
    def __init__(self):
        super(MyLayer, self).__init__()

    def forward(self, inputs):
        x = fluid.layers.relu(inputs)
        x = fluid.layers.elementwise_mul(x, x)
        x = fluid.layers.reduce_sum(x)
        return [x]


class MyPyLayer(fluid.imperative.PyLayer):
    def __init__(self):
        super(MyPyLayer, self).__init__()

    @staticmethod
    def forward(inputs):
        return np.tanh(inputs[0])

    @staticmethod
    def backward(inputs):
        return np.array(dout) * (1 - np.square(np.array(out)))


np_inp = np.ones([2, 2], np.float32)
with fluid.imperative.guard():
    my_py_layer = MyPyLayer()
    outs = my_py_layer(np_inp)
    dy_out = np.sum(outs[0]._numpy())
    outs[0]._backward()
    dy_grad = var_inp._gradient()


class MLP(fluid.imperative.Layer):
    def __init__(self):
        super(MLP, self).__init__()
        self._fc1 = FC(3,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))
        self._fc2 = FC(4,
                       fluid.ParamAttr(
                           initializer=fluid.initializer.Constant(value=0.1)))

    def forward(self, inputs):
        x = self._fc1(inputs)
        x = self._fc2(x)
        x = fluid.layers.reduce_sum(x)
        return x


 np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
 with fluid.imperative.guard():
     var_inp = fluid.imperative.base.to_variable(np_inp)
     mlp = MLP()
     out = mlp(var_inp)
     dy_out = out._numpy()
     out._backward()
```

# Plan

2.1,3 fulltime, Can run a few simple models. (Currently, 2 20% engs)

4.1, 4 fulltime, Can run 6 models, Performance 70% Pytorch. Release alpha.

6.1, 5 fulltime, Performance close to Pytorch, can run multi-devices. Release Beta.

8.1, 5 fulltime, Works in general. Update existing models. Can compile to static graph, support more optimizations.

12.1 Done.

# Discussion

TODO.