data_layout_transform.cc 6.6 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/data_layout_transform.h"
#include <string>
#include <vector>

#include "paddle/fluid/operators/math/math_function.h"
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"
#endif

namespace paddle {
namespace framework {

std::vector<int> GetAxis(const DataLayout& from, const DataLayout& to) {
  PADDLE_ENFORCE_NE(from, to,
                    "layout transform should transform different layout");
  if (from == DataLayout::kNCHW && to == DataLayout::kNHWC) {
    return {0, 2, 3, 1};
  } else if (from == DataLayout::kNHWC && to == DataLayout::kNCHW) {
    return {0, 3, 1, 2};
  } else {
    PADDLE_THROW("unsupported transform");
  }
}

struct CastDataLayout {
  CastDataLayout(const platform::DeviceContext* ctx,
                 const std::vector<int>& axis, const framework::Tensor& in,
                 framework::Tensor* out)
      : in_(in), out_(out), ctx_(ctx), axis_(axis) {}
  const framework::Tensor in_;
  framework::Tensor* out_;
  const platform::DeviceContext* ctx_;
  const std::vector<int> axis_;

  template <typename T>
  void apply() {
    auto place = ctx_->GetPlace();

    if (platform::is_cpu_place(place)) {
      operators::math::Transpose<platform::CPUDeviceContext, T, 4> trans4;
      auto* context = static_cast<const platform::CPUDeviceContext*>(ctx_);
      trans4(*context, in_, out_, axis_);
    } else {
      PADDLE_THROW("Unsupport CPU <-> GPU!");
    }
  }
};

void TransDataLayout(const OpKernelType& kernel_type_for_var,
                     const OpKernelType& expected_kernel_type, const Tensor& in,
                     Tensor* out) {
  PADDLE_ENFORCE(
      platform::places_are_same_class(kernel_type_for_var.place_,
                                      expected_kernel_type.place_),
      "TransDataLayout only support DataLayout transform on same place!");

  PADDLE_ENFORCE(arity(in.dims()) == 4, "Input Arity only support 4!");

  auto& pool = platform::DeviceContextPool::Instance();

  auto src_dim = in.dims();
  std::vector<int64_t> dst_dim;

  auto axis = GetAxis(kernel_type_for_var.data_layout_,
                      expected_kernel_type.data_layout_);
  dst_dim.resize(axis.size());
  for (size_t i = 0; i < axis.size(); i++) {
    dst_dim[i] = src_dim[axis[i]];
  }

  out->Resize(make_ddim(dst_dim));
  out->mutable_data(expected_kernel_type.place_, in.type());

  framework::VisitDataType(
      in.type(),
      CastDataLayout(pool.Get(expected_kernel_type.place_), axis, in, out));

  out->set_layout(expected_kernel_type.data_layout_);
}

#ifdef PADDLE_WITH_MKLDNN
using mkldnn::memory;
using mkldnn::primitive;
using mkldnn::reorder;

void* GetDataFromTensor(const Tensor& tensor, mkldnn::memory::data_type type) {
  switch (type) {
    case mkldnn::memory::data_type::f32:
      return platform::to_void_cast(tensor.data<float>());
    case mkldnn::memory::data_type::s8:
      return platform::to_void_cast(tensor.data<int8_t>());
    case mkldnn::memory::data_type::u8:
      return platform::to_void_cast(tensor.data<unsigned char>());
    case mkldnn::memory::data_type::s16:
      return platform::to_void_cast(tensor.data<int16_t>());
    case mkldnn::memory::data_type::s32:
      return platform::to_void_cast(tensor.data<int32_t>());
    default:
      PADDLE_THROW("wrong mkldnn type provided");
  }
}
#endif

void TransDataLayoutFromMKLDNN(const OpKernelType& kernel_type_for_var,
                               const OpKernelType& expected_kernel_type,
                               const Tensor& in, Tensor* out) {
  auto in_layout = kernel_type_for_var.data_layout_;
  auto out_layout = expected_kernel_type.data_layout_;

  PADDLE_ENFORCE(
      in_layout == DataLayout::kMKLDNN && out_layout != DataLayout::kMKLDNN,
      "TransDataLayoutFromMKLDNN only supports transform from MKLDNN to "
      "non-MKLDNN");

#ifdef PADDLE_WITH_MKLDNN
  PADDLE_ENFORCE(in.format() != memory::format::format_undef &&
                     in.format() != memory::format::any,
                 "Input tensor should have specified memory format");

  // Set default as NCHW in case not specified
  out_layout =
      out_layout == DataLayout::kAnyLayout ? DataLayout::kNCHW : out_layout;

  auto& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = dynamic_cast<platform::MKLDNNDeviceContext*>(
      pool.Get(expected_kernel_type.place_));
  auto& cpu_engine = dev_ctx->GetEngine();

  std::vector<int> in_tz = paddle::framework::vectorize2int(in.dims());
  std::vector<int> out_tz = in_tz;

  memory::data_type in_type = ToMKLDNNDataType(in.type());
  PADDLE_ENFORCE(in_type != memory::data_type::data_undef,
                 "Input tensor type is not supported: %s", in.type());

  auto in_format = platform::MKLDNNFormatForSize(in_tz.size(), in.format());
  auto out_format =
      platform::MKLDNNFormatForSize(in_tz.size(), ToMKLDNNFormat(out_layout));

  // output tensor has the same dims as input. Reorder don't change dims
  out->Resize(in.dims());

  if (in_format != out_format) {
    void* in_data = GetDataFromTensor(in, in_type);
    const std::string key = platform::ReorderMKLDNNHandler::GetHash(
        in_tz, in_format, out_format, std::to_string(in_type));

    platform::ReorderMKLDNNHandler handler(in_tz, in.type(), in_type, *dev_ctx,
                                           cpu_engine, key);

    auto reorder_src_memory_p = handler.AcquireSrcMemory(in_format, in_data);
    auto reorder_dst_memory_p =
        handler.AcquireDstMemory(out, out_format, expected_kernel_type.place_);
    auto reorder_p =
        handler.AcquireReorder(reorder_dst_memory_p, reorder_src_memory_p);

    std::vector<mkldnn::primitive> pipeline;
    pipeline.push_back(*reorder_p);
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
  } else {
    out->ShareDataWith(in);
  }
  out->set_layout(out_layout);
  // reset format since the out tensor will be feed to non-MKLDNN OPkernel
  out->set_format(memory::format::format_undef);
#endif
}

}  // namespace framework
}  // namespace paddle