buddy_allocator.cc 10.7 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/memory/detail/buddy_allocator.h"

#include <algorithm>
#include <utility>

#include "glog/logging.h"

DEFINE_bool(free_idle_memory, false,
            "If it is true, Paddle will try to free idle memory trunks during "
            "running time.");

namespace paddle {
namespace memory {
namespace detail {

BuddyAllocator::BuddyAllocator(
    std::unique_ptr<SystemAllocator> system_allocator, size_t min_chunk_size,
    size_t max_chunk_size)
    : min_chunk_size_(min_chunk_size),
      max_chunk_size_(max_chunk_size),
      cache_(system_allocator->UseGpu()),
      system_allocator_(std::move(system_allocator)) {}

BuddyAllocator::~BuddyAllocator() {
  VLOG(10) << "BuddyAllocator Disconstructor makes sure that all of these "
              "have actually been freed";
  while (!pool_.empty()) {
    auto block = static_cast<MemoryBlock*>(std::get<2>(*pool_.begin()));
    VLOG(10) << "Free from block (" << block << ", " << block->size(cache_)
             << ")";

    system_allocator_->Free(block, block->size(cache_), block->index(cache_));
    cache_.invalidate(block);
    pool_.erase(pool_.begin());
  }
}

inline size_t align(size_t size, size_t alignment) {
  size_t remaining = size % alignment;
  return remaining == 0 ? size : size + (alignment - remaining);
}

void* BuddyAllocator::Alloc(size_t unaligned_size) {
  // adjust allocation alignment
  size_t size =
      align(unaligned_size + sizeof(MemoryBlock::Desc), min_chunk_size_);

  // acquire the allocator lock
  std::lock_guard<std::mutex> lock(mutex_);

  VLOG(10) << "Allocate " << unaligned_size << " bytes from chunk size "
           << size;

  // if the allocation is huge, send directly to the system allocator
  if (size > max_chunk_size_) {
    VLOG(10) << "Allocate from system allocator.";
    return SystemAlloc(size);
  }

  // query and allocate from the existing chunk
  auto it = FindExistChunk(size);

  // refill the pool if failure
  if (it == pool_.end()) {
    it = RefillPool(size);
    // if still failure, fail fatally
    if (it == pool_.end()) {
      return nullptr;
    }
  } else {
    VLOG(10) << "Allocation from existing memory block " << std::get<2>(*it)
             << " at address "
             << reinterpret_cast<MemoryBlock*>(std::get<2>(*it))->data();
  }

  total_used_ += size;
  total_free_ -= size;

  // split the allocation and return data for use
  return reinterpret_cast<MemoryBlock*>(SplitToAlloc(it, size))->data();
}

void BuddyAllocator::Free(void* p) {
  // Point back to metadata
  auto block = static_cast<MemoryBlock*>(p)->metadata();

  // Acquire the allocator lock
  std::lock_guard<std::mutex> lock(mutex_);

  VLOG(10) << "Free from address " << block;

  if (block->type(cache_) == MemoryBlock::HUGE_CHUNK) {
    VLOG(10) << "Free directly from system allocator";
    system_allocator_->Free(block, block->total_size(cache_),
                            block->index(cache_));

    // Invalidate GPU allocation from cache
    cache_.invalidate(block);

    return;
  }

  block->mark_as_free(&cache_);

  total_used_ -= block->total_size(cache_);
  total_free_ += block->total_size(cache_);

  // Trying to merge the right buddy
  if (block->has_right_buddy(cache_)) {
    VLOG(10) << "Merging this block " << block << " with its right buddy "
             << block->right_buddy(cache_);

    auto right_buddy = block->right_buddy(cache_);

    if (right_buddy->type(cache_) == MemoryBlock::FREE_CHUNK) {
      // Take away right buddy from pool
      pool_.erase(IndexSizeAddress(right_buddy->index(cache_),
                                   right_buddy->total_size(cache_),
                                   right_buddy));

      // merge its right buddy to the block
      block->merge(&cache_, right_buddy);
    }
  }

  // Trying to merge the left buddy
  if (block->has_left_buddy(cache_)) {
    VLOG(10) << "Merging this block " << block << " with its left buddy "
             << block->left_buddy(cache_);

    auto left_buddy = block->left_buddy(cache_);

    if (left_buddy->type(cache_) == MemoryBlock::FREE_CHUNK) {
      // Take away right buddy from pool
      pool_.erase(IndexSizeAddress(left_buddy->index(cache_),
                                   left_buddy->total_size(cache_), left_buddy));

      // merge the block to its left buddy
      left_buddy->merge(&cache_, block);
      block = left_buddy;
    }
  }

  // Dumping this block into pool
  VLOG(10) << "Inserting free block (" << block << ", "
           << block->total_size(cache_) << ")";
  pool_.insert(
      IndexSizeAddress(block->index(cache_), block->total_size(cache_), block));

  if (FLAGS_free_idle_memory) {
    // Clean up if existing too much free memory
    // Prefer freeing fallback allocation first
    CleanIdleFallBackAlloc();

    // Free normal allocation
    CleanIdleNormalAlloc();
  }
}

size_t BuddyAllocator::Used() { return total_used_; }
size_t BuddyAllocator::GetMinChunkSize() { return min_chunk_size_; }
size_t BuddyAllocator::GetMaxChunkSize() { return max_chunk_size_; }

void* BuddyAllocator::SystemAlloc(size_t size) {
  size_t index = 0;
  void* p = system_allocator_->Alloc(&index, size);

  VLOG(10) << "Allocated " << p << " from system allocator.";

  if (p == nullptr) return nullptr;

  static_cast<MemoryBlock*>(p)->init(&cache_, MemoryBlock::HUGE_CHUNK, index,
                                     size, nullptr, nullptr);

  return static_cast<MemoryBlock*>(p)->data();
}

BuddyAllocator::PoolSet::iterator BuddyAllocator::RefillPool(
    size_t request_bytes) {
  size_t allocate_bytes = max_chunk_size_;
  size_t index = 0;

#ifdef PADDLE_WITH_CUDA
  if (system_allocator_->UseGpu()) {
    if ((total_used_ + total_free_) == 0) {
      // Compute the allocation size for gpu for the first allocation.
      allocate_bytes = std::max(platform::GpuInitAllocSize(), request_bytes);
    } else {
      // Reallocation size
      if (realloc_size_ == 0) {
        realloc_size_ = platform::GpuReallocSize();
      }
      allocate_bytes = std::max(realloc_size_, request_bytes);
    }
  }
#endif

  // Allocate a new block
  void* p = system_allocator_->Alloc(&index, allocate_bytes);

  if (p == nullptr) return pool_.end();

  VLOG(10) << "Creating and inserting new block " << p
           << " from system allocator";

  static_cast<MemoryBlock*>(p)->init(&cache_, MemoryBlock::FREE_CHUNK, index,
                                     allocate_bytes, nullptr, nullptr);

  // gpu fallback allocation
  if (system_allocator_->UseGpu() &&
      static_cast<MemoryBlock*>(p)->index(cache_) == 1) {
    fallback_alloc_count_++;
  }

  total_free_ += allocate_bytes;

  // dump the block into pool
  return pool_.insert(IndexSizeAddress(index, allocate_bytes, p)).first;
}

BuddyAllocator::PoolSet::iterator BuddyAllocator::FindExistChunk(size_t size) {
  size_t index = 0;

  while (1) {
    auto it = pool_.lower_bound(IndexSizeAddress(index, size, nullptr));

    // no match chunk memory
    if (it == pool_.end()) return it;

    if (std::get<0>(*it) > index) {
      // find suitable one
      if (std::get<1>(*it) >= size) {
        return it;
      }
      // update and continue
      index = std::get<0>(*it);
      continue;
    }
    return it;
  }
}

void* BuddyAllocator::SplitToAlloc(BuddyAllocator::PoolSet::iterator it,
                                   size_t size) {
  auto block = static_cast<MemoryBlock*>(std::get<2>(*it));
  pool_.erase(it);

  VLOG(10) << "Split block (" << block << ", " << block->total_size(cache_)
           << ") into";
  block->split(&cache_, size);

  VLOG(10) << "Left block (" << block << ", " << block->total_size(cache_)
           << ")";
  block->set_type(&cache_, MemoryBlock::ARENA_CHUNK);

  // the rest of memory if exist
  if (block->has_right_buddy(cache_)) {
    if (block->right_buddy(cache_)->type(cache_) == MemoryBlock::FREE_CHUNK) {
      VLOG(10) << "Insert right block (" << block->right_buddy(cache_) << ", "
               << block->right_buddy(cache_)->total_size(cache_) << ")";

      pool_.insert(
          IndexSizeAddress(block->right_buddy(cache_)->index(cache_),
                           block->right_buddy(cache_)->total_size(cache_),
                           block->right_buddy(cache_)));
    }
  }

  return block;
}

void BuddyAllocator::CleanIdleFallBackAlloc() {
  // If fallback allocation does not exist, return directly
  if (!fallback_alloc_count_) return;

  for (auto pool = pool_.rbegin(); pool != pool_.rend();) {
    // If free memory block less than max_chunk_size_, return directly
    if (std::get<1>(*pool) < max_chunk_size_) return;

    MemoryBlock* block = static_cast<MemoryBlock*>(std::get<2>(*pool));

    // If no GPU fallback allocator, return
    if (!system_allocator_->UseGpu() || block->index(cache_) == 0) {
      return;
    }

    VLOG(10) << "Return block " << block << " to fallback allocator.";

    system_allocator_->Free(block, block->size(cache_), block->index(cache_));
    cache_.invalidate(block);

    pool = PoolSet::reverse_iterator(pool_.erase(std::next(pool).base()));

    total_free_ -= block->size(cache_);
    fallback_alloc_count_--;

    // If no fall allocation exists, return directly
    if (!fallback_alloc_count_) return;
  }
}

void BuddyAllocator::CleanIdleNormalAlloc() {
  auto shall_free_alloc = [&]() -> bool {
    // free all fallback allocations
    if (fallback_alloc_count_ > 0) {
      return true;
    }
    // keep 2x overhead if we haven't fallen back
    if ((total_used_ + max_chunk_size_) * 2 < total_free_) {
      return true;
    }
    return false;
  };

  if (!shall_free_alloc()) return;

  for (auto pool = pool_.rbegin(); pool != pool_.rend();) {
    // If free memory block less than max_chunk_size_, return directly
    if (std::get<1>(*pool) < max_chunk_size_) return;

    MemoryBlock* block = static_cast<MemoryBlock*>(std::get<2>(*pool));

    VLOG(10) << "Return block " << block << " to base allocator.";

    system_allocator_->Free(block, block->size(cache_), block->index(cache_));
    cache_.invalidate(block);

    pool = PoolSet::reverse_iterator(pool_.erase(std::next(pool).base()));

    total_free_ -= block->size(cache_);

    if (!shall_free_alloc()) return;
  }
}

}  // namespace detail
}  // namespace memory
}  // namespace paddle