best_fit_allocator.cc 5.2 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/memory/allocation/best_fit_allocator.h"
#include <cmath>
#include <list>
#include <map>
#include <string>

namespace paddle {
namespace memory {
namespace allocation {

static int HighestBitPos(size_t N) {
  if (UNLIKELY(N == 0)) {
    return 0;
  } else {
#ifdef __GNUCC__
    return sizeof(unsigned int) * 8 - __builtin_clz(N);
#else
    return static_cast<int>(std::log2(N) + 1);
#endif
  }
}

BestFitAllocator::BestFitAllocator(Allocation* allocation)
    : allocation_(allocation) {
  details::Chunk chunk;
  chunk.size_ = allocation_->size();
  chunk.offset_ = 0;
  chunk.is_free = true;
  chunks_.emplace_back(chunk);
  free_chunks_[HighestBitPos(chunk.size_)].insert(
      {chunk.size_, chunks_.begin()});
}

size_t BestFitAllocator::FreeSize() const {
  size_t acc = 0;
  for (auto& array_item : free_chunks_) {
    for (auto& pair : array_item) {
      acc += pair.second->size_;
    }
  }
  return acc;
}

BestFitAllocator::ListIt BestFitAllocator::SplitChunk(size_t request_size,
                                                      size_t free_chunk_offset,
                                                      MapIt bin_iterator) {
  auto to_split_it = bin_iterator->second;
  free_chunks_[free_chunk_offset].erase(bin_iterator);

  PADDLE_ENFORCE(to_split_it->is_free);
  PADDLE_ENFORCE_GE(to_split_it->size_, request_size);

  auto remaining_size = to_split_it->size_ - request_size;
  details::Chunk to_use;
  details::Chunk remaining;
  to_use.size_ = request_size;
  to_use.is_free = false;
  remaining.size_ = remaining_size;
  remaining.is_free = true;

  // calc offsets
  to_use.offset_ = to_split_it->offset_;
  remaining.offset_ = to_use.offset_ + to_use.size_;

  // insert to chunk list
  auto to_use_it = chunks_.insert(to_split_it, to_use);
  if (remaining.size_ != 0) {
    auto bit_size = static_cast<size_t>(HighestBitPos(remaining.size_));
    free_chunks_[bit_size].insert(
        {remaining.size_, chunks_.insert(to_split_it, remaining)});
  }
  chunks_.erase(to_split_it);
  return to_use_it;
}

void BestFitAllocator::InsertFreeNode(const ListIt& it) {
  auto pos = static_cast<size_t>(HighestBitPos(it->size_));
  auto& free_map = free_chunks_[pos];
  free_map.insert({it->size_, it});
}
void BestFitAllocator::EraseFreeNode(const ListIt& it) {
  size_t pos = static_cast<size_t>(HighestBitPos(it->size_));
  auto& free_map = free_chunks_[pos];
  auto map_it = free_map.find(it->size_);
  while (map_it->second != it && map_it != free_map.end()) {
    ++map_it;
  }
  PADDLE_ENFORCE(map_it != free_map.end());
  free_map.erase(map_it);
}
size_t BestFitAllocator::NumFreeChunks() const {
  size_t num = 0;
  for (auto& array_item : free_chunks_) {
    num += array_item.size();
  }
  return num;
}
void BestFitAllocator::FreeImpl(Allocation* allocation) {
  auto* bf_allocation = dynamic_cast<BestFitAllocation*>(allocation);
  PADDLE_ENFORCE_NOT_NULL(bf_allocation,
                          "The input allocation is not BestFitAllocation.");
  auto chunk_it = bf_allocation->ChunkIterator();
  PADDLE_ENFORCE(!chunk_it->is_free);
  chunk_it->is_free = true;
  if (chunk_it != chunks_.begin()) {
    auto prev_it = chunk_it;
    --prev_it;

    if (prev_it->is_free) {
      // Merge Left.
      EraseFreeNode(prev_it);
      prev_it->size_ += chunk_it->size_;
      chunks_.erase(chunk_it);
      chunk_it = prev_it;
    }
  }

  auto next_it = chunk_it;
  ++next_it;
  if (next_it != chunks_.end() && next_it->is_free) {
    EraseFreeNode(next_it);
    chunk_it->size_ += next_it->size_;
    chunks_.erase(next_it);
  }

  InsertFreeNode(chunk_it);
  delete allocation;
}
Allocation* BestFitAllocator::AllocateImpl(size_t size) {
  auto highest_set_bit = static_cast<size_t>(HighestBitPos(size));
  MapIt map_it;
  for (; highest_set_bit < free_chunks_.size(); ++highest_set_bit) {
    map_it = free_chunks_[highest_set_bit].lower_bound(size);
    if (map_it != free_chunks_[highest_set_bit].end()) {
      break;
    }
  }
  if (UNLIKELY(highest_set_bit == free_chunks_.size())) {
    throw BadAlloc(string::Sprintf(
        "Cannot allocate %d, All fragments size is %d", size, FreeSize()));
  }
  auto chunk_it = SplitChunk(size, highest_set_bit, map_it);
  return new BestFitAllocation(this, chunk_it);
}

BestFitAllocation::BestFitAllocation(
    paddle::memory::allocation::BestFitAllocator* allocator,
    typename details::ChunkList::iterator chunk_it)
    : Allocation(reinterpret_cast<void*>(
                     reinterpret_cast<uintptr_t>(allocator->BasePtr()) +
                     chunk_it->offset_),
                 chunk_it->size_, allocator->Place()),
      chunk_it_(chunk_it) {}
}  // namespace allocation
}  // namespace memory
}  // namespace paddle