split_op_plugin.cu 7.0 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <cuda_fp16.h>
#include <algorithm>
#include "paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h"
#include "paddle/fluid/inference/tensorrt/plugin/trt_plugin_factory.h"

namespace paddle {
namespace inference {
namespace tensorrt {
namespace plugin {

SplitPlugin* CreateSplitPluginDeserialize(const void* buffer, size_t length) {
  return new SplitPlugin(buffer, length);
}
REGISTER_TRT_PLUGIN("split_plugin", CreateSplitPluginDeserialize);

// copied from operators::math::SplitFunctor
template <typename T>
__global__ void SplitKernel(const T* input_data, const int in_row,
                            const int in_col, const int* out_cols,
                            int out_cols_size, T** outputs_data) {
  int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
  int curr_segment = 0;
  int curr_offset = out_cols[0];
  for (; tid_x < in_col; tid_x += blockDim.x * gridDim.x) {
    int curr_col_offset = out_cols[curr_segment + 1];
    while (curr_col_offset <= tid_x) {
      curr_offset = curr_col_offset;
      ++curr_segment;
      curr_col_offset = out_cols[curr_segment + 1];
    }

    int local_col = tid_x - curr_offset;
    int segment_width = curr_col_offset - curr_offset;
    T* output_ptr = outputs_data[curr_segment];
    if (output_ptr != nullptr) {
      int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
      for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y)
        output_ptr[tid_y * segment_width + local_col] =
            input_data[tid_y * in_col + tid_x];
    }
  }
}

template <typename T>
__global__ void SplitKernel(const T* input_data, const int in_row,
                            const int in_col, const int fixed_out_col,
                            T** outputs_data) {
  int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
  for (; tid_x < in_col; tid_x += blockDim.x * gridDim.x) {
    int split = tid_x / fixed_out_col;
    int in_offset = tid_x - split * fixed_out_col;
    T* output_ptr = outputs_data[split];
    if (output_ptr != nullptr) {
      int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
      for (; tid_y < in_row; tid_y += blockDim.y * gridDim.y)
        output_ptr[tid_y * fixed_out_col + in_offset] =
            input_data[tid_y * in_col + tid_x];
    }
  }
}

nvinfer1::Dims SplitPlugin::getOutputDimensions(
    int index, const nvinfer1::Dims* input_dims, int num_inputs) {
  PADDLE_ENFORCE_EQ(num_inputs, 1);
  PADDLE_ENFORCE_LT(index, this->getNbOutputs());

  nvinfer1::Dims output_dims = input_dims[0];
  output_dims.d[axis_] = output_length_.at(index);
  return output_dims;
}

int SplitPlugin::initialize() {
  PADDLE_ENFORCE_LE(axis_, nvinfer1::Dims::MAX_DIMS);
  // notice input dims is [C, H, W]
  nvinfer1::Dims dims = this->getInputDims(0);
  outer_rows_ = 1;
  inner_cols_ = 1;
  for (int i = 0; i < axis_; ++i) {
    outer_rows_ *= dims.d[i];
  }
  for (int i = axis_ + 1; i < dims.nbDims; ++i) {
    inner_cols_ *= dims.d[i];
  }
  same_shape_ = true;
  std::vector<int> segment_offsets(1, 0);
  for (int i = 0; i < this->getNbOutputs(); ++i) {
    if (output_length_[i] != output_length_[0]) {
      same_shape_ = false;
    }
    segment_offsets.push_back(segment_offsets.back() +
                              output_length_[i] * inner_cols_);
  }
  inner_cols_ *= dims.d[axis_];
  d_segment_offsets_ = segment_offsets;
  segment_offsets_ = std::move(segment_offsets);
  d_output_ptrs_.resize(this->getNbOutputs(), nullptr);
  return 0;
}

template <typename T>
inline void Split(cudaStream_t stream, const bool same_shape,
                  const int outer_rows, const int inner_cols,
                  const std::vector<int>& segment_offsets,
                  const int* d_segment_offsets, const T* input, T** outputs) {
  const int kThreadsPerBlock = 1024;
  const int kMaxBlocks = 65535;
  int block_cols = kThreadsPerBlock;
  if (inner_cols < kThreadsPerBlock) {  // block_cols is aligned by 32.
    block_cols = ((inner_cols + 31) >> 5) << 5;
  }
  int block_rows = kThreadsPerBlock / block_cols;
  dim3 block_size = dim3(block_cols, block_rows, 1);

  int grid_cols =
      std::min((inner_cols + block_cols - 1) / block_cols, kMaxBlocks);
  int grid_rows =
      std::min(kMaxBlocks / grid_cols, std::max(outer_rows / block_rows, 1));
  dim3 grid_size = dim3(grid_cols, grid_rows, 1);

  if (same_shape) {
    SplitKernel<<<grid_size, block_size, 0, stream>>>(
        input, outer_rows, inner_cols, segment_offsets[1], outputs);
  } else {
    SplitKernel<<<grid_size, block_size, 0, stream>>>(
        input, outer_rows, inner_cols, d_segment_offsets,
        static_cast<int>(segment_offsets.size()), outputs);
  }
}

int SplitPlugin::enqueue(int batchSize, const void* const* inputs,
                         void** outputs, void* workspace, cudaStream_t stream) {
  float const* input_ptr = reinterpret_cast<float const*>(inputs[0]);
  if (((batchSize == 1 && axis_ == 0) || axis_ == -1) &&
      this->getNbOutputs() < 10) {
    float** output_ptrs = reinterpret_cast<float**>(outputs);
    int data_type_size = (this->getDataType() == nvinfer1::DataType::kFLOAT)
                             ? sizeof(float)
                             : sizeof(__half);
    for (int i = 0; i < this->getNbOutputs(); ++i) {
      PADDLE_ENFORCE(
          cudaMemcpyAsync(
              output_ptrs[i], input_ptr + segment_offsets_[i],
              (segment_offsets_[i + 1] - segment_offsets_[i]) * data_type_size,
              cudaMemcpyDeviceToDevice, stream) == cudaSuccess);
    }
  } else {
    outer_rows_ *= batchSize;
    const int* d_segment_offsets_ptr =
        thrust::raw_pointer_cast(&d_segment_offsets_[0]);
    float** output_ptrs = thrust::raw_pointer_cast(&d_output_ptrs_[0]);
    PADDLE_ENFORCE(cudaMemcpyAsync(output_ptrs, outputs,
                                   this->getNbOutputs() * sizeof(float*),
                                   cudaMemcpyHostToDevice,
                                   stream) == cudaSuccess);
    if (this->getDataType() == nvinfer1::DataType::kFLOAT) {
      Split(stream, same_shape_, outer_rows_, inner_cols_, segment_offsets_,
            d_segment_offsets_ptr, input_ptr, output_ptrs);
    } else {
      Split(stream, same_shape_, outer_rows_, inner_cols_, segment_offsets_,
            d_segment_offsets_ptr, (__half*)input_ptr,  // NOLINT
            (__half**)output_ptrs);                     // NOLINT
    }
  }
  return cudaGetLastError() != cudaSuccess;
}

}  // namespace plugin
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle