model.py 6.0 KB
Newer Older
O
overlordmax 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
import itertools
from paddlerec.core.utils import envs
from paddlerec.core.model import ModelBase


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def _init_hyper_parameters(self):
        self.is_distributed = True if envs.get_fleet_mode().upper(
        ) == "PSLIB" else False
        self.sparse_feature_number = envs.get_global_env(
            "hyper_parameters.sparse_feature_number")
        self.sparse_feature_dim = envs.get_global_env(
            "hyper_parameters.sparse_feature_dim")
        self.learning_rate = envs.get_global_env(
            "hyper_parameters.optimizer.learning_rate")

    def _SENETLayer(self, inputs, filed_size, reduction_ratio=3):
        reduction_size = max(1, filed_size // reduction_ratio)
        Z = fluid.layers.reduce_mean(inputs, dim=-1)

        A_1 = fluid.layers.fc(
            input=Z,
            size=reduction_size,
            param_attr=fluid.initializer.Xavier(uniform=False),
            act='relu',
            name='W_1')

        A_2 = fluid.layers.fc(
            input=A_1,
            size=filed_size,
            param_attr=fluid.initializer.Xavier(uniform=False),
            act='relu',
            name='W_2')

        V = fluid.layers.elementwise_mul(
            inputs, y=fluid.layers.unsqueeze(
                input=A_2, axes=[2]))

        return fluid.layers.split(V, num_or_sections=filed_size, dim=1)

    def _BilinearInteraction(self,
                             inputs,
                             filed_size,
                             embedding_size,
                             bilinear_type="interaction"):
        if bilinear_type == "all":
            p = [
                fluid.layers.elementwise_mul(
                    fluid.layers.fc(
                        input=v_i,
                        size=embedding_size,
                        param_attr=fluid.initializer.Xavier(uniform=False),
                        act=None,
                        name=None),
                    fluid.layers.squeeze(
                        input=v_j, axes=[1]))
                for v_i, v_j in itertools.combinations(inputs, 2)
            ]
        else:
            raise NotImplementedError

        return fluid.layers.concat(input=p, axis=1)

    def _DNNLayer(self, inputs, dropout_rate=0.5):
        deep_input = inputs
        for i, hidden_unit in enumerate([400, 400, 400]):
            fc_out = fluid.layers.fc(
                input=deep_input,
                size=hidden_unit,
                param_attr=fluid.initializer.Xavier(uniform=False),
                act='relu',
                name='d_' + str(i))
            fc_out = fluid.layers.dropout(fc_out, dropout_prob=dropout_rate)
            deep_input = fc_out

        return deep_input

    def net(self, input, is_infer=False):
        self.sparse_inputs = self._sparse_data_var[1:]
        self.dense_input = self._dense_data_var[0]
        self.label_input = self._sparse_data_var[0]

        emb = []
        for data in self.sparse_inputs:
            feat_emb = fluid.embedding(
                input=data,
                size=[self.sparse_feature_number, self.sparse_feature_dim],
                param_attr=fluid.ParamAttr(
                    name='dis_emb',
                    learning_rate=5,
                    initializer=fluid.initializer.Xavier(
                        fan_in=self.sparse_feature_dim,
                        fan_out=self.sparse_feature_dim)),
                is_sparse=True)
            emb.append(feat_emb)
        concat_emb = fluid.layers.concat(emb, axis=1)

        filed_size = len(self.sparse_inputs)
        bilinear_type = envs.get_global_env("hyper_parameters.bilinear_type")
        reduction_ratio = envs.get_global_env(
            "hyper_parameters.reduction_ratio")
        dropout_rate = envs.get_global_env("hyper_parameters.dropout_rate")

        senet_output = self._SENETLayer(concat_emb, filed_size,
                                        reduction_ratio)
        senet_bilinear_out = self._BilinearInteraction(
            senet_output, filed_size, self.sparse_feature_dim, bilinear_type)

        concat_emb = fluid.layers.split(
            concat_emb, num_or_sections=filed_size, dim=1)
        bilinear_out = self._BilinearInteraction(
            concat_emb, filed_size, self.sparse_feature_dim, bilinear_type)
        dnn_input = fluid.layers.concat(
            input=[senet_bilinear_out, bilinear_out, self.dense_input], axis=1)
        dnn_output = self._DNNLayer(dnn_input, dropout_rate)

        y_pred = fluid.layers.fc(
            input=dnn_output,
            size=1,
            param_attr=fluid.initializer.Xavier(uniform=False),
            act='sigmoid',
            name='logit')
        self.predict = y_pred
        auc, batch_auc, _ = fluid.layers.auc(input=self.predict,
                                             label=self.label_input,
                                             num_thresholds=2**12,
                                             slide_steps=20)

        if is_infer:
            self._infer_results["AUC"] = auc
            self._infer_results["BATCH_AUC"] = batch_auc
            return

        self._metrics["AUC"] = auc
        self._metrics["BATCH_AUC"] = batch_auc
        cost = fluid.layers.log_loss(
            input=self.predict,
            label=fluid.layers.cast(
                x=self.label_input, dtype='float32'))
        avg_cost = fluid.layers.reduce_mean(cost)
        self._cost = avg_cost