single_trainer.py 6.1 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Training use fluid with one node only.
"""

from __future__ import print_function
import logging
import paddle.fluid as fluid

T
rename  
tangwei 已提交
23 24
from fleetrec.core.trainers.transpiler_trainer import TranspileTrainer
from fleetrec.core.utils import envs
T
tangwei 已提交
25
import numpy as np
T
tangwei 已提交
26 27 28 29 30 31

logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


T
tangwei 已提交
32
class SingleTrainer(TranspileTrainer):
T
tangwei 已提交
33 34 35
    def processor_register(self):
        self.regist_context_processor('uninit', self.instance)
        self.regist_context_processor('init_pass', self.init)
C
chengmo 已提交
36
        self.regist_context_processor('startup_pass', self.startup)
Y
add din  
yaoxuefeng 已提交
37
        if envs.get_platform() == "LINUX" and envs.get_global_env("dataset_class", None, "train.reader") != "DataLoader":
T
tangwei 已提交
38 39 40 41
            self.regist_context_processor('train_pass', self.dataset_train)
        else:
            self.regist_context_processor('train_pass', self.dataloader_train)

T
tangwei 已提交
42 43 44 45
        self.regist_context_processor('infer_pass', self.infer)
        self.regist_context_processor('terminal_pass', self.terminal)

    def init(self, context):
T
tangwei 已提交
46
        self.model.train_net()
T
tangwei 已提交
47
        optimizer = self.model.optimizer()
T
tangwei 已提交
48
        optimizer.minimize((self.model.get_cost_op()))
T
tangwei 已提交
49 50 51 52

        self.fetch_vars = []
        self.fetch_alias = []
        self.fetch_period = self.model.get_fetch_period()
T
tangwei 已提交
53

T
tangwei 已提交
54 55 56 57
        metrics = self.model.get_metrics()
        if metrics:
            self.fetch_vars = metrics.values()
            self.fetch_alias = metrics.keys()
C
chengmo 已提交
58 59 60 61
        context['status'] = 'startup_pass'

    def startup(self, context):
        self._exe.run(fluid.default_startup_program())
T
tangwei 已提交
62 63
        context['status'] = 'train_pass'

T
tangwei 已提交
64
    def dataloader_train(self, context):
M
malin10 已提交
65
        reader = self._get_dataloader("TRAIN")
T
tangwei 已提交
66
        epochs = envs.get_global_env("train.epochs")
T
tangwei 已提交
67

T
tangwei 已提交
68 69
        program = fluid.compiler.CompiledProgram(
            fluid.default_main_program()).with_data_parallel(
T
tangwei 已提交
70
            loss_name=self.model.get_cost_op().name)
T
tangwei 已提交
71 72 73 74 75 76 77 78

        metrics_varnames = []
        metrics_format = []

        metrics_format.append("{}: {{}}".format("epoch"))
        metrics_format.append("{}: {{}}".format("batch"))

        for name, var in self.model.get_metrics().items():
T
tangwei 已提交
79
            metrics_varnames.append(var.name)
T
tangwei 已提交
80 81 82
            metrics_format.append("{}: {{}}".format(name))

        metrics_format = ", ".join(metrics_format)
T
tangwei 已提交
83

T
tangwei 已提交
84 85 86 87 88 89 90 91 92 93
        for epoch in range(epochs):
            reader.start()
            batch_id = 0
            try:
                while True:
                    metrics_rets = self._exe.run(
                        program=program,
                        fetch_list=metrics_varnames)

                    metrics = [epoch, batch_id]
T
tangwei 已提交
94
                    metrics.extend(metrics_rets)
T
tangwei 已提交
95 96

                    if batch_id % 10 == 0 and batch_id != 0:
T
tangwei 已提交
97
                        print(metrics_format.format(*metrics))
T
tangwei 已提交
98 99 100
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()
M
malin10 已提交
101
            self.save(epoch, "train", is_fleet=False)
T
tangwei 已提交
102 103 104 105

        context['status'] = 'infer_pass'

    def dataset_train(self, context):
M
malin10 已提交
106
        dataset = self._get_dataset("TRAIN")
T
tangwei 已提交
107 108 109
        epochs = envs.get_global_env("train.epochs")

        for i in range(epochs):
T
tangwei 已提交
110 111 112 113
            self._exe.train_from_dataset(program=fluid.default_main_program(),
                                         dataset=dataset,
                                         fetch_list=self.fetch_vars,
                                         fetch_info=self.fetch_alias,
M
malin10 已提交
114 115
                                         print_period=1,
                                         debug=True)
T
tangwei 已提交
116 117 118 119
            self.save(i, "train", is_fleet=False)
        context['status'] = 'infer_pass'

    def infer(self, context):
M
malin10 已提交
120 121 122 123 124 125
        infer_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(infer_program, startup_program):
                self.model.infer_net()

M
bug fix  
malin10 已提交
126 127 128 129
        if self.model._infer_data_loader is None:
            context['status'] = 'terminal_pass'
            return

M
malin10 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
        reader = self._get_dataloader("Evaluate")

        metrics_varnames = []
        metrics_format = []

        metrics_format.append("{}: {{}}".format("epoch"))
        metrics_format.append("{}: {{}}".format("batch"))

        for name, var in self.model.get_infer_results().items():
            metrics_varnames.append(var.name)
            metrics_format.append("{}: {{}}".format(name))

        metrics_format = ", ".join(metrics_format)
        self._exe.run(startup_program)

        for (epoch, model_dir) in self.increment_models:
            print("Begin to infer epoch {}, model_dir: {}".format(epoch, model_dir))
            program = infer_program.clone()
            fluid.io.load_persistables(self._exe, model_dir, program)
            reader.start()
            batch_id = 0
            try:
                while True:
                    metrics_rets = self._exe.run(
                        program=program,
                        fetch_list=metrics_varnames)

                    metrics = [epoch, batch_id]
                    metrics.extend(metrics_rets)

                    if batch_id % 2 == 0 and batch_id != 0:
                        print(metrics_format.format(*metrics))
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()
 
T
tangwei 已提交
166 167 168 169 170 171
        context['status'] = 'terminal_pass'

    def terminal(self, context):
        for model in self.increment_models:
            print("epoch :{}, dir: {}".format(model[0], model[1]))
        context['is_exit'] = True