简体中文 | [English](README.md) ## Style Text ### 目录 - [一、工具简介](#工具简介) - [二、环境配置](#环境配置) - [三、快速上手](#快速上手) - [四、应用案例](#应用案例) - [五、代码结构](#代码结构) ### 一、工具简介
Style-Text数据合成工具是基于文本编辑算法《Editing Text in the Wild》https://arxiv.org/abs/1908.03047 不同于常用的基于GAN的数据合成工具,Style-Text主要框架包括:1.文本前景风格迁移模块 2.背景抽取模块 3.融合模块。经过这样三步,就可以迅速实现图像文本风格迁移。下图是一些该数据合成工具效果图。
### 二、环境配置 1. 参考[快速安装](../doc/doc_ch/installation.md),安装PaddleOCR。 2. 进入`StyleText`目录,下载模型,并解压: ```bash cd StyleText wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/style_text/style_text_models.zip unzip style_text_models.zip ``` 如果您将模型保存再其他位置,请在`configs/config.yml`中修改模型文件的地址,修改时需要同时修改这三个配置: ``` bg_generator: pretrain: style_text_models/bg_generator ... text_generator: pretrain: style_text_models/text_generator ... fusion_generator: pretrain: style_text_models/fusion_generator ``` ### 三、快速上手 #### 合成单张图 输入一张风格图和一段文字语料,运行tools/synth_image,合成单张图片,结果图像保存在当前目录下: ```python python3 tools/synth_image.py -c configs/config.yml --style_image examples/style_images/2.jpg --text_corpus PaddleOCR --language en ``` * 注1:语言选项和语料相对应,目前该工具只支持英文、简体中文和韩语。 * 注2:Style-Text生成的数据主要应用于OCR识别场景。基于当前PaddleOCR识别模型的设计,我们主要支持高度在32左右的风格图像。 如果输入图像尺寸相差过多,效果可能不佳。 * 注3:可以通过修改配置文件中的`use_gpu`(true或者false)参数来决定是否使用GPU进行预测。 例如,输入如下图片和语料"PaddleOCR":
生成合成数据`fake_fusion.jpg`:
除此之外,程序还会生成并保存中间结果`fake_bg.jpg`:为风格参考图去掉文字后的背景;
`fake_text.jpg`:是用提供的字符串,仿照风格参考图中文字的风格,生成在灰色背景上的文字图片。
#### 批量合成 在实际应用场景中,经常需要批量合成图片,补充到训练集中。Style-Text可以使用一批风格图片和语料,批量合成数据。合成过程如下: 1. 在`configs/dataset_config.yml`中配置目标场景风格图像和语料的路径,具体如下: * `Global`: * `output_dir:`:保存合成数据的目录。 * `StyleSampler`: * `image_home`:风格图片目录; * `label_file`:风格图片路径列表文件,如果所用数据集有label,则label_file为label文件路径; * `with_label`:标志`label_file`是否为label文件。 * `CorpusGenerator`: * `method`:语料生成方法,目前有`FileCorpus`和`EnNumCorpus`可选。如果使用`EnNumCorpus`,则不需要填写其他配置,否则需要修改`corpus_file`和`language`; * `language`:语料的语种; * `corpus_file`: 语料文件路径。语料文件应使用文本文件。语料生成器首先会将语料按行切分,之后每次随机选取一行。 语料文件格式示例: ``` PaddleOCR 飞桨文字识别 StyleText 风格文本图像数据合成 ... ``` Style-Text也提供了一批中英韩5万张通用场景数据用作文本风格图像,便于合成场景丰富的文本图像,下图给出了一些示例。 中英韩5万张通用场景数据: [下载地址](https://paddleocr.bj.bcebos.com/dygraph_v2.0/style_text/chkoen_5w.tar)
2. 运行`tools/synth_dataset`合成数据: ``` bash python tools/synth_dataset.py -c configs/dataset_config.yml ``` 我们在examples目录下提供了样例图片和语料。
直接运行上述命令,可以在output_data中产生样例输出,包括图片和用于训练识别模型的标注文件:
其中label目录下的标注文件为程序运行过程中产生的缓存,如果程序在中途异常终止,可以使用缓存的标注文件。 如果程序正常运行完毕,则会在output_data下生成label.txt,为最终的标注结果。 ### 四、应用案例 下面以金属表面英文数字识别和通用韩语识别两个场景为例,说明使用Style-Text合成数据,来提升文本识别效果的实际案例。下图给出了一些真实场景图像和合成图像的示例:
在添加上述合成数据进行训练后,识别模型的效果提升,如下表所示: | 场景 | 字符 | 原始数据 | 测试数据 | 只使用原始数据
识别准确率 | 新增合成数据 | 同时使用合成数据
识别准确率 | 指标提升 | | -------- | ---------- | -------- | -------- | -------------------------- | ------------ | ---------------------- | -------- | | 金属表面 | 英文和数字 | 2203 | 650 | 0.5938 | 20000 | 0.7546 | 16% | | 随机背景 | 韩语 | 5631 | 1230 | 0.3012 | 100000 | 0.5057 | 20% | ### 五、代码结构 ``` StyleText |-- arch // 网络结构定义文件 | |-- base_module.py | |-- decoder.py | |-- encoder.py | |-- spectral_norm.py | `-- style_text_rec.py |-- configs // 配置文件 | |-- config.yml | `-- dataset_config.yml |-- engine // 数据合成引擎 | |-- corpus_generators.py // 从文本采样或随机生成语料 | |-- predictors.py // 调用网络生成数据 | |-- style_samplers.py // 采样风格图片 | |-- synthesisers.py // 调度各个模块,合成数据 | |-- text_drawers.py // 生成标准文字图片,用作输入 | `-- writers.py // 将合成的图片和标签写入本地目录 |-- examples // 示例文件 | |-- corpus | | `-- example.txt | |-- image_list.txt | `-- style_images | |-- 1.jpg | `-- 2.jpg |-- fonts // 字体文件 | |-- ch_standard.ttf | |-- en_standard.ttf | `-- ko_standard.ttf |-- tools // 程序入口 | |-- __init__.py | |-- synth_dataset.py // 批量合成数据 | `-- synth_image.py // 合成单张图片 `-- utils // 其他基础功能模块 |-- config.py |-- load_params.py |-- logging.py |-- math_functions.py `-- sys_funcs.py ```