import math import paddle import paddle.nn as nn import paddle.nn.functional as F class Bottleneck(nn.Layer): ''' ratio: 16 growthRate: 24 reduction: 0.5 bottleneck: True use_dropout: True ''' def __init__(self, nChannels, growthRate, use_dropout): super(Bottleneck, self).__init__() interChannels = 4 * growthRate self.bn1 = nn.BatchNorm2D(interChannels) self.conv1 = nn.Conv2D( nChannels, interChannels, kernel_size=1, bias_attr=None) # Xavier initialization self.bn2 = nn.BatchNorm2D(growthRate) self.conv2 = nn.Conv2D( interChannels, growthRate, kernel_size=3, padding=1, bias_attr=None) # Xavier initialization self.use_dropout = use_dropout self.dropout = nn.Dropout(p=0.2) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) if self.use_dropout: out = self.dropout(out) out = F.relu(self.bn2(self.conv2(out))) if self.use_dropout: out = self.dropout(out) out = paddle.concat([x, out], 1) return out class SingleLayer(nn.Layer): def __init__(self, nChannels, growthRate, use_dropout): super(SingleLayer, self).__init__() self.bn1 = nn.BatchNorm2D(nChannels) self.conv1 = nn.Conv2D( nChannels, growthRate, kernel_size=3, padding=1, bias_attr=False) self.use_dropout = use_dropout self.dropout = nn.Dropout(p=0.2) def forward(self, x): out = self.conv1(F.relu(x)) if self.use_dropout: out = self.dropout(out) out = paddle.concat([x, out], 1) return out class Transition(nn.Layer): def __init__(self, nChannels, out_channels, use_dropout): super(Transition, self).__init__() self.bn1 = nn.BatchNorm2D(out_channels) self.conv1 = nn.Conv2D( nChannels, out_channels, kernel_size=1, bias_attr=False) self.use_dropout = use_dropout self.dropout = nn.Dropout(p=0.2) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) if self.use_dropout: out = self.dropout(out) out = F.avg_pool2d(out, 2, ceil_mode=True, exclusive=False) return out class DenseNet(nn.Layer): def __init__(self, growthRate, reduction, bottleneck, use_dropout, input_channel, **kwargs): super(DenseNet, self).__init__() ''' ratio: 16 growthRate: 24 reduction: 0.5 ''' nDenseBlocks = 16 nChannels = 2 * growthRate self.conv1 = nn.Conv2D( input_channel, nChannels, kernel_size=7, padding=3, stride=2, bias_attr=False) self.dense1 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck, use_dropout) nChannels += nDenseBlocks * growthRate out_channels = int(math.floor(nChannels * reduction)) self.trans1 = Transition(nChannels, out_channels, use_dropout) nChannels = out_channels self.dense2 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck, use_dropout) nChannels += nDenseBlocks * growthRate out_channels = int(math.floor(nChannels * reduction)) self.trans2 = Transition(nChannels, out_channels, use_dropout) nChannels = out_channels self.dense3 = self._make_dense(nChannels, growthRate, nDenseBlocks, bottleneck, use_dropout) self.out_channels = out_channels def _make_dense(self, nChannels, growthRate, nDenseBlocks, bottleneck, use_dropout): layers = [] for i in range(int(nDenseBlocks)): if bottleneck: layers.append(Bottleneck(nChannels, growthRate, use_dropout)) else: layers.append(SingleLayer(nChannels, growthRate, use_dropout)) nChannels += growthRate return nn.Sequential(*layers) def forward(self, inputs): x, x_m, y = inputs out = self.conv1(x) out = F.relu(out) out = F.max_pool2d(out, 2, ceil_mode=True) out = self.dense1(out) out = self.trans1(out) out = self.dense2(out) out = self.trans2(out) out = self.dense3(out) return out, x_m, y