package ocr import ( "image" "image/color" "math" "sort" "github.com/LKKlein/gocv" "github.com/LKKlein/PaddleOCR/deploy/paddleocr-go/paddle" clipper "github.com/ctessum/go.clipper" ) type xFloatSortBy [][]float32 func (a xFloatSortBy) Len() int { return len(a) } func (a xFloatSortBy) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a xFloatSortBy) Less(i, j int) bool { return a[i][0] < a[j][0] } type xIntSortBy [][]int func (a xIntSortBy) Len() int { return len(a) } func (a xIntSortBy) Swap(i, j int) { a[i], a[j] = a[j], a[i] } func (a xIntSortBy) Less(i, j int) bool { return a[i][0] < a[j][0] } type DetPostProcess interface { Run(output *paddle.ZeroCopyTensor, oriH, oriW int, ratioH, ratioW float64) [][][]int } type DBPostProcess struct { thresh float64 boxThresh float64 maxCandidates int unClipRatio float64 minSize int } func NewDBPostProcess(thresh, boxThresh, unClipRatio float64) *DBPostProcess { return &DBPostProcess{ thresh: thresh, boxThresh: boxThresh, unClipRatio: unClipRatio, maxCandidates: 1000, minSize: 3, } } func (d *DBPostProcess) getMinBoxes(rect gocv.RotatedRect) [][]float32 { points := gocv.NewMat() gocv.BoxPoints(rect, &points) defer points.Close() array := d.mat2slice(points) sort.Sort(xFloatSortBy(array)) point1, point2, point3, point4 := array[0], array[1], array[2], array[3] if array[3][1] <= array[2][1] { point2, point3 = array[3], array[2] } else { point2, point3 = array[2], array[3] } if array[1][1] <= array[0][1] { point1, point4 = array[1], array[0] } else { point1, point4 = array[0], array[1] } array = [][]float32{point1, point2, point3, point4} return array } func (d *DBPostProcess) mat2slice(mat gocv.Mat) [][]float32 { array := make([][]float32, mat.Rows()) for i := 0; i < mat.Rows(); i++ { tmp := make([]float32, mat.Cols()) for j := 0; j < mat.Cols(); j++ { tmp[j] = mat.GetFloatAt(i, j) } array[i] = tmp } return array } func (d *DBPostProcess) boxScoreFast(array [][]float32, pred gocv.Mat) float64 { height, width := pred.Rows(), pred.Cols() boxX := []float32{array[0][0], array[1][0], array[2][0], array[3][0]} boxY := []float32{array[0][1], array[1][1], array[2][1], array[3][1]} xmin := clip(int(math.Floor(float64(minf(boxX)))), 0, width-1) xmax := clip(int(math.Ceil(float64(maxf(boxX)))), 0, width-1) ymin := clip(int(math.Floor(float64(minf(boxY)))), 0, height-1) ymax := clip(int(math.Ceil(float64(maxf(boxY)))), 0, height-1) mask := gocv.NewMatWithSize(ymax-ymin+1, xmax-xmin+1, gocv.MatTypeCV8UC1) ppt := make([][]image.Point, 1) ppt[0] = make([]image.Point, 4) ppt[0][0] = image.Point{int(array[0][0]) - xmin, int(array[0][1]) - ymin} ppt[0][1] = image.Point{int(array[1][0]) - xmin, int(array[1][1]) - ymin} ppt[0][2] = image.Point{int(array[2][0]) - xmin, int(array[2][1]) - ymin} ppt[0][3] = image.Point{int(array[3][0]) - xmin, int(array[3][1]) - ymin} gocv.FillPoly(&mask, ppt, color.RGBA{0, 0, 1, 0}) croppedImg := pred.Region(image.Rect(xmin, ymin, xmax+1, ymax+1)) s := croppedImg.MeanWithMask(mask) return s.Val1 } func (d *DBPostProcess) unClip(box [][]float32) gocv.RotatedRect { var area, dist float64 for i := 0; i < 4; i++ { area += float64(box[i][0]*box[(i+1)%4][1] - box[i][1]*box[(i+1)%4][0]) dist += math.Sqrt(float64( (box[i][0]-box[(i+1)%4][0])*(box[i][0]-box[(i+1)%4][0]) + (box[i][1]-box[(i+1)%4][1])*(box[i][1]-box[(i+1)%4][1]), )) } area = math.Abs(area / 2.0) distance := area * d.unClipRatio / dist offset := clipper.NewClipperOffset() path := make([]*clipper.IntPoint, 4) path[0] = &clipper.IntPoint{X: clipper.CInt(box[0][0]), Y: clipper.CInt(box[0][1])} path[1] = &clipper.IntPoint{X: clipper.CInt(box[1][0]), Y: clipper.CInt(box[1][1])} path[2] = &clipper.IntPoint{X: clipper.CInt(box[2][0]), Y: clipper.CInt(box[2][1])} path[3] = &clipper.IntPoint{X: clipper.CInt(box[3][0]), Y: clipper.CInt(box[3][1])} offset.AddPath(clipper.Path(path), clipper.JtRound, clipper.EtClosedPolygon) soln := offset.Execute(distance) points := make([]image.Point, 0, 4) for i := 0; i < len(soln); i++ { for j := 0; j < len(soln[i]); j++ { points = append(points, image.Point{int(soln[i][j].X), int(soln[i][j].Y)}) } } var res gocv.RotatedRect if len(points) <= 0 { points = make([]image.Point, 4) points[0] = image.Pt(0, 0) points[1] = image.Pt(1, 0) points[2] = image.Pt(1, 1) points[3] = image.Pt(0, 1) res = gocv.RotatedRect{ Contour: points, BoundingRect: image.Rect(0, 0, 1, 1), Center: gocv.Point2f{X: 0.5, Y: 0.5}, Width: 1, Height: 1, Angle: 0, } } else { res = gocv.MinAreaRect(points) } return res } func (d *DBPostProcess) boxesFromBitmap(pred gocv.Mat, mask gocv.Mat, ratioH float64, ratioW float64) [][][]int { height, width := mask.Rows(), mask.Cols() mask.MultiplyUChar(255) contours := gocv.FindContours(mask, gocv.RetrievalList, gocv.ChainApproxSimple) numContours := len(contours) if numContours > d.maxCandidates { numContours = d.maxCandidates } boxes := make([][][]int, 0, numContours) for i := 0; i < numContours; i++ { contour := contours[i] boundingbox := gocv.MinAreaRect(contour) if boundingbox.Width < float32(d.minSize) || boundingbox.Height < float32(d.minSize) { continue } points := d.getMinBoxes(boundingbox) score := d.boxScoreFast(points, pred) if score < d.boxThresh { continue } box := d.unClip(points) if box.Width < float32(d.minSize+2) || box.Height < float32(d.minSize+2) { continue } cliparray := d.getMinBoxes(box) dstHeight, dstWidth := pred.Rows(), pred.Cols() intcliparray := make([][]int, 4) for i := 0; i < 4; i++ { p := []int{ int(float64(clip(int(math.Round( float64(cliparray[i][0]/float32(width)*float32(dstWidth)))), 0, dstWidth)) / ratioW), int(float64(clip(int(math.Round( float64(cliparray[i][1]/float32(height)*float32(dstHeight)))), 0, dstHeight)) / ratioH), } intcliparray[i] = p } boxes = append(boxes, intcliparray) } return boxes } func (d *DBPostProcess) orderPointsClockwise(box [][]int) [][]int { sort.Sort(xIntSortBy(box)) leftmost := [][]int{box[0], box[1]} rightmost := [][]int{box[2], box[3]} if leftmost[0][1] > leftmost[1][1] { leftmost[0], leftmost[1] = leftmost[1], leftmost[0] } if rightmost[0][1] > rightmost[1][1] { rightmost[0], rightmost[1] = rightmost[1], rightmost[0] } return [][]int{leftmost[0], rightmost[0], rightmost[1], leftmost[1]} } func (d *DBPostProcess) filterTagDetRes(boxes [][][]int, oriH, oriW int) [][][]int { points := make([][][]int, 0, len(boxes)) for i := 0; i < len(boxes); i++ { boxes[i] = d.orderPointsClockwise(boxes[i]) for j := 0; j < len(boxes[i]); j++ { boxes[i][j][0] = clip(boxes[i][j][0], 0, oriW-1) boxes[i][j][1] = clip(boxes[i][j][1], 0, oriH-1) } } for i := 0; i < len(boxes); i++ { rectW := int(math.Sqrt(math.Pow(float64(boxes[i][0][0]-boxes[i][1][0]), 2.0) + math.Pow(float64(boxes[i][0][1]-boxes[i][1][1]), 2.0))) rectH := int(math.Sqrt(math.Pow(float64(boxes[i][0][0]-boxes[i][3][0]), 2.0) + math.Pow(float64(boxes[i][0][1]-boxes[i][3][1]), 2.0))) if rectW <= 4 || rectH <= 4 { continue } points = append(points, boxes[i]) } return points } func (d *DBPostProcess) Run(output *paddle.ZeroCopyTensor, oriH, oriW int, ratioH, ratioW float64) [][][]int { v := output.Value().([][][][]float32) shape := output.Shape() height, width := int(shape[2]), int(shape[3]) pred := gocv.NewMatWithSize(height, width, gocv.MatTypeCV32F) bitmap := gocv.NewMatWithSize(height, width, gocv.MatTypeCV8UC1) thresh := float32(d.thresh) for i := 0; i < height; i++ { for j := 0; j < width; j++ { pred.SetFloatAt(i, j, v[0][0][i][j]) if v[0][0][i][j] > thresh { bitmap.SetUCharAt(i, j, 1) } else { bitmap.SetUCharAt(i, j, 0) } } } mask := gocv.NewMat() kernel := gocv.GetStructuringElement(gocv.MorphRect, image.Point{2, 2}) gocv.Dilate(bitmap, &mask, kernel) boxes := d.boxesFromBitmap(pred, mask, ratioH, ratioW) dtboxes := d.filterTagDetRes(boxes, oriH, oriW) return dtboxes }