# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '..'))) def set_paddle_flags(**kwargs): for key, value in kwargs.items(): if os.environ.get(key, None) is None: os.environ[key] = str(value) # NOTE(paddle-dev): All of these flags should be # set before `import paddle`. Otherwise, it would # not take any effect. set_paddle_flags( FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory ) import program from paddle import fluid from ppocr.utils.utility import initial_logger logger = initial_logger() from ppocr.utils.save_load import init_model from paddle_serving_client.io import save_model def main(): startup_prog, eval_program, place, config, _ = program.preprocess() feeded_var_names, target_vars, fetches_var_name = program.build_export( config, eval_program, startup_prog) eval_program = eval_program.clone(for_test=True) exe = fluid.Executor(place) exe.run(startup_prog) init_model(config, eval_program, exe) save_inference_dir = config['Global']['save_inference_dir'] if not os.path.exists(save_inference_dir): os.makedirs(save_inference_dir) serving_client_dir = "{}/serving_client_dir".format(save_inference_dir) serving_server_dir = "{}/serving_server_dir".format(save_inference_dir) feed_dict = { x: eval_program.global_block().var(x) for x in feeded_var_names } fetch_dict = {x.name: x for x in target_vars} save_model(serving_server_dir, serving_client_dir, feed_dict, fetch_dict, eval_program) print( "paddle serving model saved in {}/serving_server_dir and {}/serving_client_dir". format(save_inference_dir, save_inference_dir)) print("save success, output_name_list:", fetches_var_name) if __name__ == '__main__': main()