# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import cv2 import paddle from paddle.nn import functional as F from ppocr.postprocess.pse_postprocess.pse import pse class PSEPostProcess(object): """ The post process for PSE. """ def __init__(self, thresh=0.5, box_thresh=0.85, min_area=16, box_type='box', scale=4, **kwargs): assert box_type in ['box', 'poly'], 'Only box and poly is supported' self.thresh = thresh self.box_thresh = box_thresh self.min_area = min_area self.box_type = box_type self.scale = scale def __call__(self, outs_dict, shape_list): pred = outs_dict['maps'] if not isinstance(pred, paddle.Tensor): pred = paddle.to_tensor(pred) pred = F.interpolate(pred, scale_factor=4 // self.scale, mode='bilinear') score = F.sigmoid(pred[:, 0, :, :]) kernels = (pred > self.thresh).astype('float32') text_mask = kernels[:, 0, :, :] kernels[:, 0:, :, :] = kernels[:, 0:, :, :] * text_mask score = score.numpy() kernels = kernels.numpy().astype(np.uint8) boxes_batch = [] for batch_index in range(pred.shape[0]): boxes, scores = self.boxes_from_bitmap(score[batch_index], kernels[batch_index], shape_list[batch_index]) boxes_batch.append({'points': boxes, 'scores': scores}) return boxes_batch def boxes_from_bitmap(self, score, kernels, shape): label = pse(kernels, self.min_area) return self.generate_box(score, label, shape) def generate_box(self, score, label, shape): src_h, src_w, ratio_h, ratio_w = shape label_num = np.max(label) + 1 boxes = [] scores = [] for i in range(1, label_num): ind = label == i points = np.array(np.where(ind)).transpose((1, 0))[:, ::-1] if points.shape[0] < self.min_area: label[ind] = 0 continue score_i = np.mean(score[ind]) if score_i < self.box_thresh: label[ind] = 0 continue if self.box_type == 'box': rect = cv2.minAreaRect(points) bbox = cv2.boxPoints(rect) elif self.box_type == 'poly': box_height = np.max(points[:, 1]) + 10 box_width = np.max(points[:, 0]) + 10 mask = np.zeros((box_height, box_width), np.uint8) mask[points[:, 1], points[:, 0]] = 255 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) bbox = np.squeeze(contours[0], 1) else: raise NotImplementedError bbox[:, 0] = np.clip( np.round(bbox[:, 0] / ratio_w), 0, src_w) bbox[:, 1] = np.clip( np.round(bbox[:, 1] / ratio_h), 0, src_h) boxes.append(bbox) scores.append(score_i) return boxes, scores