# -*- coding:utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import cv2 import numpy as np import pyclipper from shapely.geometry import Polygon __all__ = ['MakePseGt'] class MakePseGt(object): r''' Making binary mask from detection data with ICDAR format. Typically following the process of class `MakeICDARData`. ''' def __init__(self, kernel_num=7, size=640, min_shrink_ratio=0.4, **kwargs): self.kernel_num = kernel_num self.min_shrink_ratio = min_shrink_ratio self.size = size def __call__(self, data): image = data['image'] text_polys = data['polys'] ignore_tags = data['ignore_tags'] h, w, _ = image.shape short_edge = min(h, w) if short_edge < self.size: # keep short_size >= self.size scale = self.size / short_edge image = cv2.resize(image, dsize=None, fx=scale, fy=scale) text_polys *= scale gt_kernels = [] for i in range(1,self.kernel_num+1): # s1->sn, from big to small rate = 1.0 - (1.0 - self.min_shrink_ratio) / (self.kernel_num - 1) * i text_kernel, ignore_tags = self.generate_kernel(image.shape[0:2], rate, text_polys, ignore_tags) gt_kernels.append(text_kernel) training_mask = np.ones(image.shape[0:2], dtype='uint8') for i in range(text_polys.shape[0]): if ignore_tags[i]: cv2.fillPoly(training_mask, text_polys[i].astype(np.int32)[np.newaxis, :, :], 0) gt_kernels = np.array(gt_kernels) gt_kernels[gt_kernels > 0] = 1 data['image'] = image data['polys'] = text_polys data['gt_kernels'] = gt_kernels[0:] data['gt_text'] = gt_kernels[0] data['mask'] = training_mask.astype('float32') return data def generate_kernel(self, img_size, shrink_ratio, text_polys, ignore_tags=None): h, w = img_size text_kernel = np.zeros((h, w), dtype=np.float32) for i, poly in enumerate(text_polys): polygon = Polygon(poly) distance = polygon.area * (1 - shrink_ratio * shrink_ratio) / (polygon.length + 1e-6) subject = [tuple(l) for l in poly] pco = pyclipper.PyclipperOffset() pco.AddPath(subject, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) shrinked = np.array(pco.Execute(-distance)) if len(shrinked) == 0 or shrinked.size == 0: if ignore_tags is not None: ignore_tags[i] = True continue try: shrinked = np.array(shrinked[0]).reshape(-1, 2) except: if ignore_tags is not None: ignore_tags[i] = True continue cv2.fillPoly(text_kernel, [shrinked.astype(np.int32)], i + 1) return text_kernel, ignore_tags