Global: use_gpu: true epoch_num: 5 log_smooth_window: 20 print_batch_step: 20 save_model_dir: ./sar_rec save_epoch_step: 1 # evaluation is run every 2000 iterations eval_batch_step: [0, 2000] cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: # for data or label process character_dict_path: ppocr/utils/dict90.txt character_type: EN_symbol max_text_length: 30 infer_mode: False use_space_char: False rm_symbol: True save_res_path: ./output/rec/predicts_sar.txt Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: Piecewise decay_epochs: [3, 4] values: [0.001, 0.0001, 0.00001] regularizer: name: 'L2' factor: 0 Architecture: model_type: rec algorithm: SAR Transform: Backbone: name: ResNet31 Head: name: SARHead Loss: name: SARLoss PostProcess: name: SARLabelDecode Metric: name: RecMetric Train: dataset: name: SimpleDataSet label_file_list: ['./train_data/train_list.txt'] data_dir: ./train_data/ ratio_list: 1.0 transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - SARLabelEncode: # Class handling label - SARRecResizeImg: image_shape: [3, 48, 48, 160] # h:48 w:[48,160] width_downsample_ratio: 0.25 - KeepKeys: keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 64 drop_last: True num_workers: 8 use_shared_memory: False Eval: dataset: name: LMDBDataSet data_dir: ./train_data/data_lmdb_release/evaluation/ transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - SARLabelEncode: # Class handling label - SARRecResizeImg: image_shape: [3, 48, 48, 160] width_downsample_ratio: 0.25 - KeepKeys: keep_keys: ['image', 'label', 'valid_ratio'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 64 num_workers: 4 use_shared_memory: False