#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle import paddle.fluid as fluid class ClsHead(object): def __init__(self, params): super(ClsHead, self).__init__() self.class_dim = params['class_dim'] def __call__(self, inputs, labels=None, mode=None): pool = fluid.layers.pool2d( input=inputs, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) out = fluid.layers.fc( input=pool, size=self.class_dim, param_attr=fluid.param_attr.ParamAttr( name="fc_0.w_0", initializer=fluid.initializer.Uniform(-stdv, stdv)), bias_attr=fluid.param_attr.ParamAttr(name="fc_0.b_0")) softmax_out = fluid.layers.softmax(out, use_cudnn=False) out_label = fluid.layers.argmax(out, axis=1) predicts = {'predict': softmax_out, 'decoded_out': out_label} return predicts