Global: algorithm: CLS use_gpu: false epoch_num: 30 log_smooth_window: 20 print_batch_step: 10 save_model_dir: output/cls_mb3 save_epoch_step: 3 eval_batch_step: 100 train_batch_size_per_card: 256 test_batch_size_per_card: 256 image_shape: [3, 32, 100] label_list: [0,180] reader_yml: ./configs/cls/cls_reader.yml pretrain_weights: checkpoints: /Users/zhoujun20/Desktop/code/class_model/cls_mb3_ultra_small_0.35/best_accuracy save_inference_dir: infer_img: /Users/zhoujun20/Desktop/code/PaddleOCR/doc/imgs_words/ch/word_1.jpg Architecture: function: ppocr.modeling.architectures.cls_model,ClsModel Backbone: function: ppocr.modeling.backbones.rec_mobilenet_v3,MobileNetV3 scale: 0.35 model_name: Ultra_small Head: function: ppocr.modeling.heads.cls_head,ClsHead class_dim: 2 Loss: function: ppocr.modeling.losses.cls_loss,ClsLoss Optimizer: function: ppocr.optimizer,AdamDecay base_lr: 0.001 beta1: 0.9 beta2: 0.999 decay: function: piecewise_decay boundaries: [20,30] decay_rate: 0.1