# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle from paddle import nn import paddle.nn.functional as F from paddle import ParamAttr def get_bias_attr(k): stdv = 1.0 / math.sqrt(k * 1.0) initializer = paddle.nn.initializer.Uniform(-stdv, stdv) bias_attr = ParamAttr(initializer=initializer) return bias_attr class Head(nn.Layer): def __init__(self, in_channels, name_list): super(Head, self).__init__() self.conv1 = nn.Conv2D( in_channels=in_channels, out_channels=in_channels // 4, kernel_size=3, padding=1, weight_attr=ParamAttr(), bias_attr=False) self.conv_bn1 = nn.BatchNorm( num_channels=in_channels // 4, param_attr=ParamAttr( initializer=paddle.nn.initializer.Constant(value=1.0)), bias_attr=ParamAttr( initializer=paddle.nn.initializer.Constant(value=1e-4)), act='relu') self.conv2 = nn.Conv2DTranspose( in_channels=in_channels // 4, out_channels=in_channels // 4, kernel_size=2, stride=2, weight_attr=ParamAttr( initializer=paddle.nn.initializer.KaimingUniform()), bias_attr=get_bias_attr(in_channels // 4)) self.conv_bn2 = nn.BatchNorm( num_channels=in_channels // 4, param_attr=ParamAttr( initializer=paddle.nn.initializer.Constant(value=1.0)), bias_attr=ParamAttr( initializer=paddle.nn.initializer.Constant(value=1e-4)), act="relu") self.conv3 = nn.Conv2DTranspose( in_channels=in_channels // 4, out_channels=1, kernel_size=2, stride=2, weight_attr=ParamAttr( initializer=paddle.nn.initializer.KaimingUniform()), bias_attr=get_bias_attr(in_channels // 4), ) def forward(self, x): x = self.conv1(x) x = self.conv_bn1(x) x = self.conv2(x) x = self.conv_bn2(x) x = self.conv3(x) x = F.sigmoid(x) return x class DBHead(nn.Layer): """ Differentiable Binarization (DB) for text detection: see https://arxiv.org/abs/1911.08947 args: params(dict): super parameters for build DB network """ def __init__(self, in_channels, k=50, **kwargs): super(DBHead, self).__init__() self.k = k binarize_name_list = [ 'conv2d_56', 'batch_norm_47', 'conv2d_transpose_0', 'batch_norm_48', 'conv2d_transpose_1', 'binarize' ] thresh_name_list = [ 'conv2d_57', 'batch_norm_49', 'conv2d_transpose_2', 'batch_norm_50', 'conv2d_transpose_3', 'thresh' ] self.binarize = Head(in_channels, binarize_name_list) self.thresh = Head(in_channels, thresh_name_list) def step_function(self, x, y): return paddle.reciprocal(1 + paddle.exp(-self.k * (x - y))) def forward(self, x): shrink_maps = self.binarize(x) if not self.training: return {'maps': shrink_maps} threshold_maps = self.thresh(x) binary_maps = self.step_function(shrink_maps, threshold_maps) y = paddle.concat([shrink_maps, threshold_maps, binary_maps], axis=1) return {'maps': y}