# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_server.web_service import WebService, Op import logging import numpy as np import copy import cv2 import base64 # from paddle_serving_app.reader import OCRReader from ocr_reader import OCRReader, DetResizeForTest from paddle_serving_app.reader import Sequential, ResizeByFactor from paddle_serving_app.reader import Div, Normalize, Transpose from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes _LOGGER = logging.getLogger() class DetOp(Op): def init_op(self): self.det_preprocess = Sequential([ DetResizeForTest(), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose( (2, 0, 1)) ]) self.filter_func = FilterBoxes(10, 10) self.post_func = DBPostProcess({ "thresh": 0.3, "box_thresh": 0.6, "max_candidates": 1000, "unclip_ratio": 1.5, "min_size": 3 }) def preprocess(self, input_dicts, data_id, log_id): (_, input_dict), = input_dicts.items() data = base64.b64decode(input_dict["image"].encode('utf8')) self.raw_im = data data = np.fromstring(data, np.uint8) # Note: class variables(self.var) can only be used in process op mode im = cv2.imdecode(data, cv2.IMREAD_COLOR) self.ori_h, self.ori_w, _ = im.shape det_img = self.det_preprocess(im) _, self.new_h, self.new_w = det_img.shape return {"x": det_img[np.newaxis, :].copy()}, False, None, "" def postprocess(self, input_dicts, fetch_dict, data_id, log_id): det_out = list(fetch_dict.values())[0] ratio_list = [ float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w ] dt_boxes_list = self.post_func(det_out, [ratio_list]) dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w]) out_dict = {"dt_boxes": dt_boxes, "image": self.raw_im} return out_dict, None, "" class RecOp(Op): def init_op(self): self.ocr_reader = OCRReader( char_dict_path="../../ppocr/utils/ppocr_keys_v1.txt") self.get_rotate_crop_image = GetRotateCropImage() self.sorted_boxes = SortedBoxes() def preprocess(self, input_dicts, data_id, log_id): (_, input_dict), = input_dicts.items() raw_im = input_dict["image"] data = np.frombuffer(raw_im, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) self.dt_list = input_dict["dt_boxes"] self.dt_list = self.sorted_boxes(self.dt_list) # deepcopy to save origin dt_boxes dt_boxes = copy.deepcopy(self.dt_list) feed_list = [] img_list = [] max_wh_ratio = 320/48. ## Many mini-batchs, the type of feed_data is list. max_batch_size = 6 # len(dt_boxes) # If max_batch_size is 0, skipping predict stage if max_batch_size == 0: return {}, True, None, "" boxes_size = len(dt_boxes) batch_size = boxes_size // max_batch_size rem = boxes_size % max_batch_size for bt_idx in range(0, batch_size + 1): imgs = None boxes_num_in_one_batch = 0 if bt_idx == batch_size: if rem == 0: continue else: boxes_num_in_one_batch = rem elif bt_idx < batch_size: boxes_num_in_one_batch = max_batch_size else: _LOGGER.error("batch_size error, bt_idx={}, batch_size={}". format(bt_idx, batch_size)) break start = bt_idx * max_batch_size end = start + boxes_num_in_one_batch img_list = [] for box_idx in range(start, end): boximg = self.get_rotate_crop_image(im, dt_boxes[box_idx]) img_list.append(boximg) h, w = boximg.shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) _, w, h = self.ocr_reader.resize_norm_img(img_list[0], max_wh_ratio).shape imgs = np.zeros((boxes_num_in_one_batch, 3, w, h)).astype('float32') for id, img in enumerate(img_list): norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio) imgs[id] = norm_img feed = {"x": imgs.copy()} feed_list.append(feed) return feed_list, False, None, "" def postprocess(self, input_dicts, fetch_data, data_id, log_id): rec_list = [] dt_num = len(self.dt_list) if isinstance(fetch_data, dict): if len(fetch_data) > 0: rec_batch_res = self.ocr_reader.postprocess( fetch_data, with_score=True) for res in rec_batch_res: rec_list.append(res) elif isinstance(fetch_data, list): for one_batch in fetch_data: one_batch_res = self.ocr_reader.postprocess( one_batch, with_score=True) for res in one_batch_res: rec_list.append(res) result_list = [] for i in range(dt_num): text = rec_list[i] dt_box = self.dt_list[i] if text[1] >= 0.5: result_list.append([text, dt_box.tolist()]) res = {"result": str(result_list)} return res, None, "" class OcrService(WebService): def get_pipeline_response(self, read_op): det_op = DetOp(name="det", input_ops=[read_op]) rec_op = RecOp(name="rec", input_ops=[det_op]) return rec_op uci_service = OcrService(name="ocr") uci_service.prepare_pipeline_config("config.yml") uci_service.run_service()