English | [简体中文](README.md) ## INTRODUCTION PaddleOCR aims to create a rich, leading, and practical OCR tools that help users train better models and apply them into practice. **Recent updates** - 2020.6.8 Add [dataset](./doc/doc_en/datasets_en.md) and keep updating - 2020.6.5 Support exporting `attention` model to `inference_model` - 2020.6.5 Support separate prediction and recognition, output result score - 2020.5.30 Provide lightweight Chinese OCR online experience - 2020.5.30 Model prediction and training supported on Windows system - [more](./doc/doc_en/update_en.md) ## FEATURES - Lightweight Chinese OCR model, total model size is only 8.6M - Single model supports Chinese and English numbers combination recognition, vertical text recognition, long text recognition - Detection model DB (4.1M) + recognition model CRNN (4.5M) - Various text detection algorithms: EAST, DB - Various text recognition algorithms: Rosetta, CRNN, STAR-Net, RARE ### Supported Chinese models list: |Model Name|Description |Detection Model link|Recognition Model link| Support for space Recognition Model link| |-|-|-|-|-| |chinese_db_crnn_mobile|lightweight Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)| |chinese_db_crnn_server|General Chinese OCR model|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)| For testing our Chinese OCR online:https://www.paddlepaddle.org.cn/hub/scene/ocr **You can also quickly experience the lightweight Chinese OCR and General Chinese OCR models as follows:** ## **LIGHTWEIGHT CHINESE OCR AND GENERAL CHINESE OCR INFERENCE** ![](doc/imgs_results/11.jpg) The picture above is the result of our lightweight Chinese OCR model. For more testing results, please see the end of the article [lightweight Chinese OCR results](#lightweight-Chinese-OCR-results) and [General Chinese OCR results](#General-Chinese-OCR-results). #### 1. ENVIRONMENT CONFIGURATION Please see [Quick installation](./doc/doc_en/installation_en.md) #### 2. DOWNLOAD INFERENCE MODELS #### (1) Download lightweight Chinese OCR models *If wget is not installed in the windows system, you can copy the link to the browser to download the model. After model downloaded, unzip it and place it in the corresponding directory* ``` mkdir inference && cd inference # Download the detection part of the lightweight Chinese OCR and decompress it wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar # Download the recognition part of the lightweight Chinese OCR and decompress it wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar cd .. ``` #### (2) Download General Chinese OCR models ``` mkdir inference && cd inference # Download the detection part of the general Chinese OCR model and decompress it wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar && tar xf ch_det_r50_vd_db_infer.tar # Download the recognition part of the generic Chinese OCR model and decompress it wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar && tar xf ch_rec_r34_vd_crnn_infer.tar cd .. ``` #### 3. SINGLE IMAGE AND BATCH PREDICTION The following code implements text detection and recognition inference tandemly. When performing prediction, you need to specify the path of a single image or image folder through the parameter `image_dir`, the parameter `det_model_dir` specifies the path to detection model, and the parameter `rec_model_dir` specifies the path to the recognition model. The visual prediction results are saved to the `./inference_results` folder by default. ```bash # Prediction on a single image by specifying image path to image_dir python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" # Prediction on a batch of images by specifying image folder path to image_dir python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" # If you want to use CPU for prediction, you need to set the use_gpu parameter to False python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False ``` To run inference of the Generic Chinese OCR model, follow these steps above to download the corresponding models and update the relevant parameters. Examples are as follows: ``` # Prediction on a single image by specifying image path to image_dir python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn/" ``` For more text detection and recognition models, please refer to the document [Inference](./doc/doc_en/inference_en.md) ## DOCUMENTATION - [Quick installation](./doc/doc_en/installation_en.md) - [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md) - [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md) - [Inference](./doc/doc_en/inference_en.md) - [Dataset](./doc/doc_en/datasets_en.md) ## TEXT DETECTION ALGORITHM PaddleOCR open source text detection algorithms list: - [x] EAST([paper](https://arxiv.org/abs/1704.03155)) - [x] DB([paper](https://arxiv.org/abs/1911.08947)) - [ ] SAST([paper](https://arxiv.org/abs/1908.05498))(Baidu Self-Research, comming soon) On the ICDAR2015 dataset, the text detection result is as follows: |Model|Backbone|precision|recall|Hmean|Download link| |-|-|-|-|-|-| |EAST|ResNet50_vd|88.18%|85.51%|86.82%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)| |EAST|MobileNetV3|81.67%|79.83%|80.74%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)| |DB|ResNet50_vd|83.79%|80.65%|82.19%|[Download link](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)| |DB|MobileNetV3|75.92%|73.18%|74.53%|[Download link](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)| For use of [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) street view dataset with a total of 3w training data,the related configuration and pre-trained models for Chinese detection task are as follows: |Model|Backbone|Configuration file|Pre-trained model| |-|-|-|-| |lightweight Chinese model|MobileNetV3|det_mv3_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)| |General Chinese OCR model|ResNet50_vd|det_r50_vd_db.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)| * Note: For the training and evaluation of the above DB model, post-processing parameters box_thresh=0.6 and unclip_ratio=1.5 need to be set. If using different datasets and different models for training, these two parameters can be adjusted for better result. For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./doc/doc_en/detection_en.md) ## TEXT RECOGNITION ALGORITHM PaddleOCR open-source text recognition algorithms list: - [x] CRNN([paper](https://arxiv.org/abs/1507.05717)) - [x] Rosetta([paper](https://arxiv.org/abs/1910.05085)) - [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)) - [x] RARE([paper](https://arxiv.org/abs/1603.03915v1)) - [ ] SRN([paper](https://arxiv.org/abs/2003.12294))(Baidu Self-Research, comming soon) Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow: |Model|Backbone|Avg Accuracy|Module combination|Download link| |-|-|-|-|-| |Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)| |Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)| |CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)| |CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)| |STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)| |STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)| |RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)| |RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[Download link](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)| We use [LSVT](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/datasets_en.md#1-icdar2019-lsvt) dataset and cropout 30w traning data from original photos by using position groundtruth and make some calibration needed. In addition, based on the LSVT corpus, 500w synthetic data is generated to train the Chinese model. The related configuration and pre-trained models are as follows: |Model|Backbone|Configuration file|Pre-trained model| |-|-|-|-| |lightweight Chinese model|MobileNetV3|rec_chinese_lite_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_enhance.tar)| |General Chinese OCR model|Resnet34_vd|rec_chinese_common_train.yml|[Download link](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)|[inference model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance_infer.tar) & [pre-trained model](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_enhance.tar)| Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./doc/doc_en/recognition_en.md) ## END-TO-END OCR ALGORITHM - [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(Baidu Self-Research, comming soon) ## LIGHTWEIGHT CHINESE OCR RESULTS ![](doc/imgs_results/1.jpg) ![](doc/imgs_results/7.jpg) ![](doc/imgs_results/12.jpg) ![](doc/imgs_results/4.jpg) ![](doc/imgs_results/6.jpg) ![](doc/imgs_results/9.jpg) ![](doc/imgs_results/16.png) ![](doc/imgs_results/22.jpg) ## General Chinese OCR results ![](doc/imgs_results/chinese_db_crnn_server/11.jpg) ![](doc/imgs_results/chinese_db_crnn_server/2.jpg) ![](doc/imgs_results/chinese_db_crnn_server/8.jpg) ## FAQ 1. Error when using attention-based recognition model: KeyError: 'predict' The inference of recognition model based on attention loss is still being debugged. For Chinese text recognition, it is recommended to choose the recognition model based on CTC loss first. In practice, it is also found that the recognition model based on attention loss is not as effective as the one based on CTC loss. 2. About inference speed When there are a lot of texts in the picture, the prediction time will increase. You can use `--rec_batch_num` to set a smaller prediction batch size. The default value is 30, which can be changed to 10 or other values. 3. Service deployment and mobile deployment It is expected that the service deployment based on Serving and the mobile deployment based on Paddle Lite will be released successively in mid-to-late June. Stay tuned for more updates. 4. Release time of self-developed algorithm Baidu Self-developed algorithms such as SAST, SRN and end2end PSL will be released in June or July. Please be patient. [more](./doc/doc_en/FAQ_en.md) ## WELCOME TO THE PaddleOCR TECHNICAL EXCHANGE GROUP WeChat: paddlehelp, note OCR, our assistant will get you into the group~ ## REFERENCES ``` 1. EAST: @inproceedings{zhou2017east, title={EAST: an efficient and accurate scene text detector}, author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun}, booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition}, pages={5551--5560}, year={2017} } 2. DB: @article{liao2019real, title={Real-time Scene Text Detection with Differentiable Binarization}, author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang}, journal={arXiv preprint arXiv:1911.08947}, year={2019} } 3. DTRB: @inproceedings{baek2019wrong, title={What is wrong with scene text recognition model comparisons? dataset and model analysis}, author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk}, booktitle={Proceedings of the IEEE International Conference on Computer Vision}, pages={4715--4723}, year={2019} } 4. SAST: @inproceedings{wang2019single, title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning}, author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming}, booktitle={Proceedings of the 27th ACM International Conference on Multimedia}, pages={1277--1285}, year={2019} } 5. SRN: @article{yu2020towards, title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks}, author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui}, journal={arXiv preprint arXiv:2003.12294}, year={2020} } 6. end2end-psl: @inproceedings{sun2019chinese, title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning}, author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo}, booktitle={Proceedings of the IEEE International Conference on Computer Vision}, pages={9086--9095}, year={2019} } ``` ## LICENSE This project is released under Apache 2.0 license ## CONTRIBUTION We welcome all the contributions to PaddleOCR and appreciate for your feedback very much. - Many thanks to [Khanh Tran](https://github.com/xxxpsyduck) for contributing the English documentation. - Many thanks to [zhangxin](https://github.com/ZhangXinNan) for contributing the new visualize function、add .gitgnore and discard set PYTHONPATH manually.