# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.append(os.path.abspath(os.path.join(__dir__, '../..'))) os.environ["FLAGS_allocator_strategy"] = 'auto_growth' import cv2 import numpy as np import math import time import traceback import paddle import tools.infer.utility as utility from ppocr.postprocess import build_post_process from ppocr.utils.logging import get_logger from ppocr.utils.utility import get_image_file_list, check_and_read_gif logger = get_logger() class TextRecognizer(object): def __init__(self, args): self.rec_image_shape = [int(v) for v in args.rec_image_shape.split(",")] self.character_type = args.rec_char_type self.rec_batch_num = args.rec_batch_num self.rec_algorithm = args.rec_algorithm postprocess_params = { 'name': 'CTCLabelDecode', "character_type": args.rec_char_type, "character_dict_path": args.rec_char_dict_path, "use_space_char": args.use_space_char } if self.rec_algorithm == "SRN": postprocess_params = { 'name': 'SRNLabelDecode', "character_type": args.rec_char_type, "character_dict_path": args.rec_char_dict_path, "use_space_char": args.use_space_char } elif self.rec_algorithm == "RARE": postprocess_params = { 'name': 'AttnLabelDecode', "character_type": args.rec_char_type, "character_dict_path": args.rec_char_dict_path, "use_space_char": args.use_space_char } self.postprocess_op = build_post_process(postprocess_params) self.predictor, self.input_tensor, self.output_tensors, self.config = \ utility.create_predictor(args, 'rec', logger) self.benchmark = args.benchmark if args.benchmark: import auto_log pid = os.getpid() gpu_id = utility.get_infer_gpuid() self.autolog = auto_log.AutoLogger( model_name="rec", model_precision=args.precision, batch_size=args.rec_batch_num, data_shape="dynamic", save_path=None, #args.save_log_path, inference_config=self.config, pids=pid, process_name=None, gpu_ids=gpu_id if args.use_gpu else None, time_keys=[ 'preprocess_time', 'inference_time', 'postprocess_time' ], warmup=2, logger=logger) def resize_norm_img(self, img, max_wh_ratio): imgC, imgH, imgW = self.rec_image_shape assert imgC == img.shape[2] max_wh_ratio = max(max_wh_ratio, imgW / imgH) imgW = int((32 * max_wh_ratio)) h, w = img.shape[:2] ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im def resize_norm_img_srn(self, img, image_shape): imgC, imgH, imgW = image_shape img_black = np.zeros((imgH, imgW)) im_hei = img.shape[0] im_wid = img.shape[1] if im_wid <= im_hei * 1: img_new = cv2.resize(img, (imgH * 1, imgH)) elif im_wid <= im_hei * 2: img_new = cv2.resize(img, (imgH * 2, imgH)) elif im_wid <= im_hei * 3: img_new = cv2.resize(img, (imgH * 3, imgH)) else: img_new = cv2.resize(img, (imgW, imgH)) img_np = np.asarray(img_new) img_np = cv2.cvtColor(img_np, cv2.COLOR_BGR2GRAY) img_black[:, 0:img_np.shape[1]] = img_np img_black = img_black[:, :, np.newaxis] row, col, c = img_black.shape c = 1 return np.reshape(img_black, (c, row, col)).astype(np.float32) def srn_other_inputs(self, image_shape, num_heads, max_text_length): imgC, imgH, imgW = image_shape feature_dim = int((imgH / 8) * (imgW / 8)) encoder_word_pos = np.array(range(0, feature_dim)).reshape( (feature_dim, 1)).astype('int64') gsrm_word_pos = np.array(range(0, max_text_length)).reshape( (max_text_length, 1)).astype('int64') gsrm_attn_bias_data = np.ones((1, max_text_length, max_text_length)) gsrm_slf_attn_bias1 = np.triu(gsrm_attn_bias_data, 1).reshape( [-1, 1, max_text_length, max_text_length]) gsrm_slf_attn_bias1 = np.tile( gsrm_slf_attn_bias1, [1, num_heads, 1, 1]).astype('float32') * [-1e9] gsrm_slf_attn_bias2 = np.tril(gsrm_attn_bias_data, -1).reshape( [-1, 1, max_text_length, max_text_length]) gsrm_slf_attn_bias2 = np.tile( gsrm_slf_attn_bias2, [1, num_heads, 1, 1]).astype('float32') * [-1e9] encoder_word_pos = encoder_word_pos[np.newaxis, :] gsrm_word_pos = gsrm_word_pos[np.newaxis, :] return [ encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2 ] def process_image_srn(self, img, image_shape, num_heads, max_text_length): norm_img = self.resize_norm_img_srn(img, image_shape) norm_img = norm_img[np.newaxis, :] [encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2] = \ self.srn_other_inputs(image_shape, num_heads, max_text_length) gsrm_slf_attn_bias1 = gsrm_slf_attn_bias1.astype(np.float32) gsrm_slf_attn_bias2 = gsrm_slf_attn_bias2.astype(np.float32) encoder_word_pos = encoder_word_pos.astype(np.int64) gsrm_word_pos = gsrm_word_pos.astype(np.int64) return (norm_img, encoder_word_pos, gsrm_word_pos, gsrm_slf_attn_bias1, gsrm_slf_attn_bias2) def __call__(self, img_list): img_num = len(img_list) # Calculate the aspect ratio of all text bars width_list = [] for img in img_list: width_list.append(img.shape[1] / float(img.shape[0])) # Sorting can speed up the recognition process indices = np.argsort(np.array(width_list)) rec_res = [['', 0.0]] * img_num batch_num = self.rec_batch_num st = time.time() if self.benchmark: self.autolog.times.start() for beg_img_no in range(0, img_num, batch_num): end_img_no = min(img_num, beg_img_no + batch_num) norm_img_batch = [] max_wh_ratio = 0 for ino in range(beg_img_no, end_img_no): h, w = img_list[indices[ino]].shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) for ino in range(beg_img_no, end_img_no): if self.rec_algorithm != "SRN": norm_img = self.resize_norm_img(img_list[indices[ino]], max_wh_ratio) norm_img = norm_img[np.newaxis, :] norm_img_batch.append(norm_img) else: norm_img = self.process_image_srn( img_list[indices[ino]], self.rec_image_shape, 8, 25) encoder_word_pos_list = [] gsrm_word_pos_list = [] gsrm_slf_attn_bias1_list = [] gsrm_slf_attn_bias2_list = [] encoder_word_pos_list.append(norm_img[1]) gsrm_word_pos_list.append(norm_img[2]) gsrm_slf_attn_bias1_list.append(norm_img[3]) gsrm_slf_attn_bias2_list.append(norm_img[4]) norm_img_batch.append(norm_img[0]) norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = norm_img_batch.copy() if self.benchmark: self.autolog.times.stamp() if self.rec_algorithm == "SRN": encoder_word_pos_list = np.concatenate(encoder_word_pos_list) gsrm_word_pos_list = np.concatenate(gsrm_word_pos_list) gsrm_slf_attn_bias1_list = np.concatenate( gsrm_slf_attn_bias1_list) gsrm_slf_attn_bias2_list = np.concatenate( gsrm_slf_attn_bias2_list) inputs = [ norm_img_batch, encoder_word_pos_list, gsrm_word_pos_list, gsrm_slf_attn_bias1_list, gsrm_slf_attn_bias2_list, ] input_names = self.predictor.get_input_names() for i in range(len(input_names)): input_tensor = self.predictor.get_input_handle(input_names[ i]) input_tensor.copy_from_cpu(inputs[i]) self.predictor.run() outputs = [] for output_tensor in self.output_tensors: output = output_tensor.copy_to_cpu() outputs.append(output) if self.benchmark: self.autolog.times.stamp() preds = {"predict": outputs[2]} else: self.input_tensor.copy_from_cpu(norm_img_batch) self.predictor.run() outputs = [] for output_tensor in self.output_tensors: output = output_tensor.copy_to_cpu() outputs.append(output) if self.benchmark: self.autolog.times.stamp() preds = outputs[0] rec_result = self.postprocess_op(preds) for rno in range(len(rec_result)): rec_res[indices[beg_img_no + rno]] = rec_result[rno] if self.benchmark: self.autolog.times.end(stamp=True) return rec_res, time.time() - st def main(args): image_file_list = get_image_file_list(args.image_dir) text_recognizer = TextRecognizer(args) valid_image_file_list = [] img_list = [] # warmup 2 times if args.warmup: img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8) for i in range(2): res = text_recognizer([img] * int(args.rec_batch_num)) for image_file in image_file_list: img, flag = check_and_read_gif(image_file) if not flag: img = cv2.imread(image_file) if img is None: logger.info("error in loading image:{}".format(image_file)) continue valid_image_file_list.append(image_file) img_list.append(img) try: rec_res, _ = text_recognizer(img_list) except Exception as E: logger.info(traceback.format_exc()) logger.info(E) exit() for ino in range(len(img_list)): logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[ino])) if args.benchmark: text_recognizer.autolog.report() if __name__ == "__main__": main(utility.parse_args())