# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is refer from: https://github.com/WenmuZhou/DBNet.pytorch/blob/master/models/losses/DB_loss.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import nn from .det_basic_loss import BalanceLoss, MaskL1Loss, DiceLoss class DBLoss(nn.Layer): """ Differentiable Binarization (DB) Loss Function args: param (dict): the super paramter for DB Loss """ def __init__(self, balance_loss=True, main_loss_type='DiceLoss', alpha=5, beta=10, ohem_ratio=3, eps=1e-6, **kwargs): super(DBLoss, self).__init__() self.alpha = alpha self.beta = beta self.dice_loss = DiceLoss(eps=eps) self.l1_loss = MaskL1Loss(eps=eps) self.bce_loss = BalanceLoss( balance_loss=balance_loss, main_loss_type=main_loss_type, negative_ratio=ohem_ratio) def forward(self, predicts, labels): predict_maps = predicts['maps'] label_threshold_map, label_threshold_mask, label_shrink_map, label_shrink_mask = labels[ 1:] shrink_maps = predict_maps[:, 0, :, :] threshold_maps = predict_maps[:, 1, :, :] binary_maps = predict_maps[:, 2, :, :] loss_shrink_maps = self.bce_loss(shrink_maps, label_shrink_map, label_shrink_mask) loss_threshold_maps = self.l1_loss(threshold_maps, label_threshold_map, label_threshold_mask) loss_binary_maps = self.dice_loss(binary_maps, label_shrink_map, label_shrink_mask) loss_shrink_maps = self.alpha * loss_shrink_maps loss_threshold_maps = self.beta * loss_threshold_maps # CBN loss if 'distance_maps' in predicts.keys(): distance_maps = predicts['distance_maps'] cbn_maps = predicts['cbn_maps'] cbn_loss = self.bce_loss(cbn_maps[:, 0, :, :], label_shrink_map, label_shrink_mask) else: dis_loss = paddle.to_tensor([0.]) cbn_loss = paddle.to_tensor([0.]) loss_all = loss_shrink_maps + loss_threshold_maps \ + loss_binary_maps losses = {'loss': loss_all+ cbn_loss, \ "loss_shrink_maps": loss_shrink_maps, \ "loss_threshold_maps": loss_threshold_maps, \ "loss_binary_maps": loss_binary_maps, \ "loss_cbn": cbn_loss} return losses