Global: use_gpu: true epoch_num: 5000 log_smooth_window: 20 print_batch_step: 2 save_model_dir: ./output/sast_r50_vd_tt/ save_epoch_step: 1000 # evaluation is run every 5000 iterations after the 4000th iteration eval_batch_step: [4000, 5000] cal_metric_during_train: False pretrained_model: ./pretrain_models/ResNet50_vd_ssld_pretrained/ checkpoints: save_inference_dir: use_visualdl: False infer_img: save_res_path: ./output/sast_r50_vd_tt/predicts_sast.txt Architecture: model_type: det algorithm: SAST Transform: Backbone: name: ResNet_SAST layers: 50 Neck: name: SASTFPN with_cab: True Head: name: SASTHead Loss: name: SASTLoss Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: # name: Cosine learning_rate: 0.001 # warmup_epoch: 0 regularizer: name: 'L2' factor: 0 PostProcess: name: SASTPostProcess score_thresh: 0.5 sample_pts_num: 6 nms_thresh: 0.2 expand_scale: 1.2 shrink_ratio_of_width: 0.2 Metric: name: DetMetric main_indicator: hmean Train: dataset: name: SimpleDataSet data_dir: ./train_data/ label_file_list: [./train_data/art_latin_icdar_14pt/train_no_tt_test/train_label_json.txt, ./train_data/total_text_icdar_14pt/train_label_json.txt] ratio_list: [0.5, 0.5] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - DetLabelEncode: # Class handling label - SASTProcessTrain: image_shape: [512, 512] min_crop_side_ratio: 0.3 min_crop_size: 24 min_text_size: 4 max_text_size: 512 - KeepKeys: keep_keys: ['image', 'score_map', 'border_map', 'training_mask', 'tvo_map', 'tco_map'] # dataloader will return list in this order loader: shuffle: True drop_last: False batch_size_per_card: 4 num_workers: 4 Eval: dataset: name: SimpleDataSet data_dir: ./train_data/ label_file_list: - ./train_data/total_text_icdar_14pt/test_label_json.txt transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - DetLabelEncode: # Class handling label - DetResizeForTest: resize_long: 768 - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - ToCHWImage: - KeepKeys: keep_keys: ['image', 'shape', 'polys', 'ignore_tags'] loader: shuffle: False drop_last: False batch_size_per_card: 1 # must be 1 num_workers: 2