# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.nn as nn import paddle import math import paddle.nn.functional as F class Conv_BN_ReLU(nn.Layer): def __init__(self, in_planes, out_planes, kernel_size=1, stride=1, padding=0): super(Conv_BN_ReLU, self).__init__() self.conv = nn.Conv2D(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, bias_attr=False) self.bn = nn.BatchNorm2D(out_planes, momentum=0.1) self.relu = nn.ReLU() for m in self.sublayers(): if isinstance(m, nn.Conv2D): n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', default_initializer=paddle.nn.initializer.Normal(0, math.sqrt(2. / n))) elif isinstance(m, nn.BatchNorm2D): m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', default_initializer=paddle.nn.initializer.Constant(1.0)) m.bias = paddle.create_parameter(shape=m.bias.shape, dtype='float32', default_initializer=paddle.nn.initializer.Constant(0.0)) def forward(self, x): return self.relu(self.bn(self.conv(x))) class FPN(nn.Layer): def __init__(self, in_channels, out_channels): super(FPN, self).__init__() # Top layer self.toplayer_ = Conv_BN_ReLU(in_channels[3], out_channels, kernel_size=1, stride=1, padding=0) # Lateral layers self.latlayer1_ = Conv_BN_ReLU(in_channels[2], out_channels, kernel_size=1, stride=1, padding=0) self.latlayer2_ = Conv_BN_ReLU(in_channels[1], out_channels, kernel_size=1, stride=1, padding=0) self.latlayer3_ = Conv_BN_ReLU(in_channels[0], out_channels, kernel_size=1, stride=1, padding=0) # Smooth layers self.smooth1_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.smooth2_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.smooth3_ = Conv_BN_ReLU(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.out_channels = out_channels * 4 for m in self.sublayers(): if isinstance(m, nn.Conv2D): n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', default_initializer=paddle.nn.initializer.Normal(0, math.sqrt(2. / n))) elif isinstance(m, nn.BatchNorm2D): m.weight = paddle.create_parameter(shape=m.weight.shape, dtype='float32', default_initializer=paddle.nn.initializer.Constant(1.0)) m.bias = paddle.create_parameter(shape=m.bias.shape, dtype='float32', default_initializer=paddle.nn.initializer.Constant(0.0)) def _upsample(self, x, y, scale=1): _, _, H, W = y.shape return F.upsample(x, size=(H // scale, W // scale), mode='bilinear') def _upsample_add(self, x, y): _, _, H, W = y.shape return F.upsample(x, size=(H, W), mode='bilinear') + y def forward(self, x): f2, f3, f4, f5 = x p5 = self.toplayer_(f5) f4 = self.latlayer1_(f4) p4 = self._upsample_add(p5, f4) p4 = self.smooth1_(p4) f3 = self.latlayer2_(f3) p3 = self._upsample_add(p4, f3) p3 = self.smooth2_(p3) f2 = self.latlayer3_(f2) p2 = self._upsample_add(p3, f2) p2 = self.smooth3_(p2) p3 = self._upsample(p3, p2) p4 = self._upsample(p4, p2) p5 = self._upsample(p5, p2) fuse = paddle.concat([p2, p3, p4, p5], axis=1) return fuse