Global: use_gpu: true epoch_num: 100 log_smooth_window: 20 print_batch_step: 10 save_model_dir: ./output/cls/mv3/ save_epoch_step: 3 # evaluation is run every 1000 iterations after the 0th iteration eval_batch_step: [0, 1000] cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: doc/imgs_words_en/word_10.png label_list: ['0','180'] Architecture: model_type: cls algorithm: CLS Transform: Backbone: name: MobileNetV3 scale: 0.35 model_name: small Neck: Head: name: ClsHead class_dim: 2 Loss: name: ClsLoss Optimizer: name: Adam beta1: 0.9 beta2: 0.999 lr: name: Cosine learning_rate: 0.001 regularizer: name: 'L2' factor: 0 PostProcess: name: ClsPostProcess Metric: name: ClsMetric main_indicator: acc Train: dataset: name: SimpleDataSet data_dir: ./train_data/cls label_file_list: - ./train_data/cls/train.txt transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - ClsLabelEncode: # Class handling label - RecAug: use_tia: False - RandAugment: - ClsResizeImg: image_shape: [3, 48, 192] - KeepKeys: keep_keys: ['image', 'label'] # dataloader will return list in this order loader: shuffle: True batch_size_per_card: 512 drop_last: True num_workers: 8 Eval: dataset: name: SimpleDataSet data_dir: ./train_data/cls label_file_list: - ./train_data/cls/test.txt transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - ClsLabelEncode: # Class handling label - ClsResizeImg: image_shape: [3, 48, 192] - KeepKeys: keep_keys: ['image', 'label'] # dataloader will return list in this order loader: shuffle: False drop_last: False batch_size_per_card: 512 num_workers: 4