# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle_serving_server.web_service import WebService, Op import logging import numpy as np import cv2 import base64 # from paddle_serving_app.reader import OCRReader from ocr_reader import OCRReader, DetResizeForTest from paddle_serving_app.reader import Sequential, ResizeByFactor from paddle_serving_app.reader import Div, Normalize, Transpose from paddle_serving_app.reader import DBPostProcess, FilterBoxes, GetRotateCropImage, SortedBoxes import yaml from argparse import ArgumentParser,RawDescriptionHelpFormatter _LOGGER = logging.getLogger() class ArgsParser(ArgumentParser): def __init__(self): super(ArgsParser, self).__init__( formatter_class=RawDescriptionHelpFormatter) self.add_argument("-c", "--config", help="configuration file to use") self.add_argument( "-o", "--opt", nargs='+', help="set configuration options") def parse_args(self, argv=None): args = super(ArgsParser, self).parse_args(argv) assert args.config is not None, \ "Please specify --config=configure_file_path." args.conf_dict = self._parse_opt(args.opt, args.config) return args def _parse_helper(self, v): if v.isnumeric(): if "." in v: v = float(v) else: v = int(v) elif v == "True" or v == "False": v = (v == "True") return v def _parse_opt(self, opts, conf_path): f = open(conf_path) config = yaml.load(f, Loader=yaml.Loader) if not opts: return config for s in opts: s = s.strip() k, v = s.split('=') v = self._parse_helper(v) print(k,v, type(v)) cur = config parent = cur for kk in k.split("."): if kk not in cur: cur[kk] = {} parent = cur cur = cur[kk] else: parent = cur cur = cur[kk] parent[k.split(".")[-1]] = v return config class DetOp(Op): def init_op(self): self.det_preprocess = Sequential([ DetResizeForTest(), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose( (2, 0, 1)) ]) self.filter_func = FilterBoxes(10, 10) self.post_func = DBPostProcess({ "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000, "unclip_ratio": 1.5, "min_size": 3 }) def preprocess(self, input_dicts, data_id, log_id): (_, input_dict), = input_dicts.items() data = base64.b64decode(input_dict["image"].encode('utf8')) self.raw_im = data data = np.fromstring(data, np.uint8) # Note: class variables(self.var) can only be used in process op mode im = cv2.imdecode(data, cv2.IMREAD_COLOR) self.ori_h, self.ori_w, _ = im.shape det_img = self.det_preprocess(im) _, self.new_h, self.new_w = det_img.shape return {"x": det_img[np.newaxis, :].copy()}, False, None, "" def postprocess(self, input_dicts, fetch_dict, data_id, log_id): det_out = fetch_dict["save_infer_model/scale_0.tmp_1"] ratio_list = [ float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w ] dt_boxes_list = self.post_func(det_out, [ratio_list]) dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w]) out_dict = {"dt_boxes": str(dt_boxes)} return out_dict, None, "" class OcrService(WebService): def get_pipeline_response(self, read_op): det_op = DetOp(name="det", input_ops=[read_op]) return det_op uci_service = OcrService(name="ocr") FLAGS = ArgsParser().parse_args() uci_service.prepare_pipeline_config(yml_dict=FLAGS.conf_dict) uci_service.run_service()