# 关键信息提取(Key Information Extraction)
本节介绍PaddleOCR中关键信息提取SDMGR方法的快速使用和训练方法。
SDMGR是一个关键信息提取算法,将每个检测到的文本区域分类为预定义的类别,如订单ID、发票号码,金额等。
* [1. 快速使用](#1-----)
* [2. 执行训练](#2-----)
* [3. 执行评估](#3-----)
## 1. 快速使用
训练和测试的数据采用wildreceipt数据集,通过如下指令下载数据集:
```
wget https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/wildreceipt.tar && tar xf wildreceipt.tar
```
执行预测:
```
cd PaddleOCR/
wget https://paddleocr.bj.bcebos.com/dygraph_v2.1/kie/kie_vgg16.tar && tar xf kie_vgg16.tar
python3.7 tools/infer_kie.py -c configs/kie/kie_unet_sdmgr.yml -o Global.checkpoints=kie_vgg16/best_accuracy Global.infer_img=../wildreceipt/1.txt
```
执行预测后的结果保存在`./output/sdmgr_kie/predicts_kie.txt`文件中,可视化结果保存在`/output/sdmgr_kie/kie_results/`目录下。
可视化结果如下图所示:
## 2. 执行训练
创建数据集软链到PaddleOCR/train_data目录下:
```
cd PaddleOCR/ && mkdir train_data && cd train_data
ln -s ../../wildreceipt ./
```
训练采用的配置文件是configs/kie/kie_unet_sdmgr.yml,配置文件中默认训练数据路径是`train_data/wildreceipt`,准备好数据后,可以通过如下指令执行训练:
```
python3.7 tools/train.py -c configs/kie/kie_unet_sdmgr.yml -o Global.save_model_dir=./output/kie/
```
## 3. 执行评估
```
python3.7 tools/eval.py -c configs/kie/kie_unet_sdmgr.yml -o Global.checkpoints=./output/kie/best_accuracy
```
**参考文献:**
```bibtex
@misc{sun2021spatial,
title={Spatial Dual-Modality Graph Reasoning for Key Information Extraction},
author={Hongbin Sun and Zhanghui Kuang and Xiaoyu Yue and Chenhao Lin and Wayne Zhang},
year={2021},
eprint={2103.14470},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```