# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This code is refer from: https://github.com/hikopensource/DAVAR-Lab-OCR/davarocr/davar_rcg/models/backbones/ResNet32.py """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import ParamAttr import paddle.nn as nn import paddle.nn.functional as F import numpy as np __all__ = ["ResNet32"] conv_weight_attr = nn.initializer.KaimingNormal() class ResNet32(nn.Layer): """ Feature Extractor is proposed in FAN Ref [1] Ref [1]: Focusing Attention: Towards Accurate Text Recognition in Neural Images ICCV-2017 """ def __init__(self, in_channels, out_channels=512): """ Args: in_channels (int): input channel output_channel (int): output channel """ super(ResNet32, self).__init__() self.out_channels = out_channels self.ConvNet = ResNet(in_channels, out_channels, BasicBlock, [1, 2, 5, 3]) def forward(self, inputs): """ Args: inputs (torch.Tensor): input feature Returns: torch.Tensor: output feature """ return self.ConvNet(inputs) class BasicBlock(nn.Layer): """Res-net Basic Block""" expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, norm_type='BN', **kwargs): """ Args: inplanes (int): input channel planes (int): channels of the middle feature stride (int): stride of the convolution downsample (int): type of the down_sample norm_type (str): type of the normalization **kwargs (None): backup parameter """ super(BasicBlock, self).__init__() self.conv1 = self._conv3x3(inplanes, planes) self.bn1 = nn.BatchNorm2D(planes) self.conv2 = self._conv3x3(planes, planes) self.bn2 = nn.BatchNorm2D(planes) self.relu = nn.ReLU() self.downsample = downsample self.stride = stride def _conv3x3(self, in_planes, out_planes, stride=1): """ Args: in_planes (int): input channel out_planes (int): channels of the middle feature stride (int): stride of the convolution Returns: nn.Module: Conv2D with kernel = 3 """ return nn.Conv2D(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, weight_attr=conv_weight_attr, bias_attr=False) def forward(self, x): """ Args: x (torch.Tensor): input feature Returns: torch.Tensor: output feature of the BasicBlock """ residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Layer): """Res-Net network structure""" def __init__(self, input_channel, output_channel, block, layers): """ Args: input_channel (int): input channel output_channel (int): output channel block (BasicBlock): convolution block layers (list): layers of the block """ super(ResNet, self).__init__() self.output_channel_block = [int(output_channel / 4), int(output_channel / 2), output_channel, output_channel] self.inplanes = int(output_channel / 8) self.conv0_1 = nn.Conv2D(input_channel, int(output_channel / 16), kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr, bias_attr=False) self.bn0_1 = nn.BatchNorm2D(int(output_channel / 16)) self.conv0_2 = nn.Conv2D(int(output_channel / 16), self.inplanes, kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr, bias_attr=False) self.bn0_2 = nn.BatchNorm2D(self.inplanes) self.relu = nn.ReLU() self.maxpool1 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) self.layer1 = self._make_layer(block, self.output_channel_block[0], layers[0]) self.conv1 = nn.Conv2D(self.output_channel_block[0], self.output_channel_block[0], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr, bias_attr=False) self.bn1 = nn.BatchNorm2D(self.output_channel_block[0]) self.maxpool2 = nn.MaxPool2D(kernel_size=2, stride=2, padding=0) self.layer2 = self._make_layer(block, self.output_channel_block[1], layers[1], stride=1) self.conv2 = nn.Conv2D(self.output_channel_block[1], self.output_channel_block[1], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr, bias_attr=False,) self.bn2 = nn.BatchNorm2D(self.output_channel_block[1]) self.maxpool3 = nn.MaxPool2D(kernel_size=2, stride=(2, 1), padding=(0, 1)) self.layer3 = self._make_layer(block, self.output_channel_block[2], layers[2], stride=1) self.conv3 = nn.Conv2D(self.output_channel_block[2], self.output_channel_block[2], kernel_size=3, stride=1, padding=1, weight_attr=conv_weight_attr, bias_attr=False) self.bn3 = nn.BatchNorm2D(self.output_channel_block[2]) self.layer4 = self._make_layer(block, self.output_channel_block[3], layers[3], stride=1) self.conv4_1 = nn.Conv2D(self.output_channel_block[3], self.output_channel_block[3], kernel_size=2, stride=(2, 1), padding=(0, 1), weight_attr=conv_weight_attr, bias_attr=False) self.bn4_1 = nn.BatchNorm2D(self.output_channel_block[3]) self.conv4_2 = nn.Conv2D(self.output_channel_block[3], self.output_channel_block[3], kernel_size=2, stride=1, padding=0, weight_attr=conv_weight_attr, bias_attr=False) self.bn4_2 = nn.BatchNorm2D(self.output_channel_block[3]) def _make_layer(self, block, planes, blocks, stride=1): """ Args: block (block): convolution block planes (int): input channels blocks (list): layers of the block stride (int): stride of the convolution Returns: nn.Sequential: the combination of the convolution block """ downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2D(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, weight_attr=conv_weight_attr, bias_attr=False), nn.BatchNorm2D(planes * block.expansion), ) layers = list() layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): """ Args: x (torch.Tensor): input feature Returns: torch.Tensor: output feature of the Resnet """ x = self.conv0_1(x) x = self.bn0_1(x) x = self.relu(x) x = self.conv0_2(x) x = self.bn0_2(x) x = self.relu(x) x = self.maxpool1(x) x = self.layer1(x) x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool2(x) x = self.layer2(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) x = self.maxpool3(x) x = self.layer3(x) x = self.conv3(x) x = self.bn3(x) x = self.relu(x) x = self.layer4(x) x = self.conv4_1(x) x = self.bn4_1(x) x = self.relu(x) x = self.conv4_2(x) x = self.bn4_2(x) x = self.relu(x) return x