Global: use_gpu: true epoch_num: 400 log_smooth_window: 20 print_batch_step: 5 save_model_dir: ./output/table_mv3/ save_epoch_step: 400 # evaluation is run every 400 iterations after the 0th iteration eval_batch_step: [0, 400] cal_metric_during_train: True pretrained_model: checkpoints: save_inference_dir: use_visualdl: False infer_img: ppstructure/docs/table/table.jpg save_res_path: output/table_mv3 # for data or label process character_dict_path: ppocr/utils/dict/table_structure_dict.txt character_type: en max_text_length: &max_text_length 800 box_format: &box_format 'xyxy' # 'xywh', 'xyxy', 'xyxyxyxy' infer_mode: False Optimizer: name: Adam beta1: 0.9 beta2: 0.999 clip_norm: 5.0 lr: learning_rate: 0.001 regularizer: name: 'L2' factor: 0.00000 Architecture: model_type: table algorithm: TableAttn Backbone: name: MobileNetV3 scale: 1.0 model_name: large Head: name: TableAttentionHead hidden_size: 256 loc_type: 2 max_text_length: *max_text_length loc_reg_num: &loc_reg_num 4 Loss: name: TableAttentionLoss structure_weight: 100.0 loc_weight: 10000.0 PostProcess: name: TableLabelDecode Metric: name: TableMetric main_indicator: acc compute_bbox_metric: false # cost many time, set False for training Train: dataset: name: PubTabDataSet data_dir: train_data/table/pubtabnet/train/ label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_train.jsonl] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - TableLabelEncode: learn_empty_box: False merge_no_span_structure: False replace_empty_cell_token: False loc_reg_num: *loc_reg_num max_text_length: *max_text_length - TableBoxEncode: - ResizeTableImage: max_len: 488 - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - PaddingTableImage: size: [488, 488] - ToCHWImage: - KeepKeys: keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ] loader: shuffle: True batch_size_per_card: 32 drop_last: True num_workers: 1 Eval: dataset: name: PubTabDataSet data_dir: train_data/table/pubtabnet/val/ label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl] transforms: - DecodeImage: # load image img_mode: BGR channel_first: False - TableLabelEncode: learn_empty_box: False merge_no_span_structure: False replace_empty_cell_token: False loc_reg_num: *loc_reg_num max_text_length: *max_text_length - TableBoxEncode: - ResizeTableImage: max_len: 488 - NormalizeImage: scale: 1./255. mean: [0.485, 0.456, 0.406] std: [0.229, 0.224, 0.225] order: 'hwc' - PaddingTableImage: size: [488, 488] - ToCHWImage: - KeepKeys: keep_keys: [ 'image', 'structure', 'bboxes', 'bbox_masks', 'shape' ] loader: shuffle: False drop_last: False batch_size_per_card: 16 num_workers: 1