# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import cv2 import copy import numpy as np import math import re import sys import argparse import string from copy import deepcopy import paddle class DetResizeForTest(object): def __init__(self, **kwargs): super(DetResizeForTest, self).__init__() self.resize_type = 0 if 'image_shape' in kwargs: self.image_shape = kwargs['image_shape'] self.resize_type = 1 elif 'limit_side_len' in kwargs: self.limit_side_len = kwargs['limit_side_len'] self.limit_type = kwargs.get('limit_type', 'min') elif 'resize_long' in kwargs: self.resize_type = 2 self.resize_long = kwargs.get('resize_long', 960) else: self.limit_side_len = 736 self.limit_type = 'min' def __call__(self, data): img = deepcopy(data) src_h, src_w, _ = img.shape if self.resize_type == 0: img, [ratio_h, ratio_w] = self.resize_image_type0(img) elif self.resize_type == 2: img, [ratio_h, ratio_w] = self.resize_image_type2(img) else: img, [ratio_h, ratio_w] = self.resize_image_type1(img) return img def resize_image_type1(self, img): resize_h, resize_w = self.image_shape ori_h, ori_w = img.shape[:2] # (h, w, c) ratio_h = float(resize_h) / ori_h ratio_w = float(resize_w) / ori_w img = cv2.resize(img, (int(resize_w), int(resize_h))) return img, [ratio_h, ratio_w] def resize_image_type0(self, img): """ resize image to a size multiple of 32 which is required by the network args: img(array): array with shape [h, w, c] return(tuple): img, (ratio_h, ratio_w) """ limit_side_len = self.limit_side_len h, w, _ = img.shape # limit the max side if self.limit_type == 'max': if max(h, w) > limit_side_len: if h > w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w else: ratio = 1. else: if min(h, w) < limit_side_len: if h < w: ratio = float(limit_side_len) / h else: ratio = float(limit_side_len) / w else: ratio = 1. resize_h = int(h * ratio) resize_w = int(w * ratio) resize_h = int(round(resize_h / 32) * 32) resize_w = int(round(resize_w / 32) * 32) try: if int(resize_w) <= 0 or int(resize_h) <= 0: return None, (None, None) img = cv2.resize(img, (int(resize_w), int(resize_h))) except: print(img.shape, resize_w, resize_h) sys.exit(0) ratio_h = resize_h / float(h) ratio_w = resize_w / float(w) # return img, np.array([h, w]) return img, [ratio_h, ratio_w] def resize_image_type2(self, img): h, w, _ = img.shape resize_w = w resize_h = h # Fix the longer side if resize_h > resize_w: ratio = float(self.resize_long) / resize_h else: ratio = float(self.resize_long) / resize_w resize_h = int(resize_h * ratio) resize_w = int(resize_w * ratio) max_stride = 128 resize_h = (resize_h + max_stride - 1) // max_stride * max_stride resize_w = (resize_w + max_stride - 1) // max_stride * max_stride img = cv2.resize(img, (int(resize_w), int(resize_h))) ratio_h = resize_h / float(h) ratio_w = resize_w / float(w) return img, [ratio_h, ratio_w] class BaseRecLabelDecode(object): """ Convert between text-label and text-index """ def __init__(self, config): support_character_type = [ 'ch', 'en', 'EN_symbol', 'french', 'german', 'japan', 'korean', 'it', 'xi', 'pu', 'ru', 'ar', 'ta', 'ug', 'fa', 'ur', 'rs', 'oc', 'rsc', 'bg', 'uk', 'be', 'te', 'ka', 'chinese_cht', 'hi', 'mr', 'ne', 'EN' ] character_type = config['character_type'] character_dict_path = config['character_dict_path'] use_space_char = True assert character_type in support_character_type, "Only {} are supported now but get {}".format( support_character_type, character_type) self.beg_str = "sos" self.end_str = "eos" if character_type == "en": self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" dict_character = list(self.character_str) elif character_type == "EN_symbol": # same with ASTER setting (use 94 char). self.character_str = string.printable[:-6] dict_character = list(self.character_str) elif character_type in support_character_type: self.character_str = "" assert character_dict_path is not None, "character_dict_path should not be None when character_type is {}".format( character_type) with open(character_dict_path, "rb") as fin: lines = fin.readlines() for line in lines: line = line.decode('utf-8').strip("\n").strip("\r\n") self.character_str += line if use_space_char: self.character_str += " " dict_character = list(self.character_str) else: raise NotImplementedError self.character_type = character_type dict_character = self.add_special_char(dict_character) self.dict = {} for i, char in enumerate(dict_character): self.dict[char] = i self.character = dict_character def add_special_char(self, dict_character): return dict_character def decode(self, text_index, text_prob=None, is_remove_duplicate=False): """ convert text-index into text-label. """ result_list = [] ignored_tokens = self.get_ignored_tokens() batch_size = len(text_index) for batch_idx in range(batch_size): char_list = [] conf_list = [] for idx in range(len(text_index[batch_idx])): if text_index[batch_idx][idx] in ignored_tokens: continue if is_remove_duplicate: # only for predict if idx > 0 and text_index[batch_idx][idx - 1] == text_index[ batch_idx][idx]: continue char_list.append(self.character[int(text_index[batch_idx][ idx])]) if text_prob is not None: conf_list.append(text_prob[batch_idx][idx]) else: conf_list.append(1) text = ''.join(char_list) result_list.append((text, np.mean(conf_list))) return result_list def get_ignored_tokens(self): return [0] # for ctc blank class CTCLabelDecode(BaseRecLabelDecode): """ Convert between text-label and text-index """ def __init__( self, config, #character_dict_path=None, #character_type='ch', #use_space_char=False, **kwargs): super(CTCLabelDecode, self).__init__(config) def __call__(self, preds, label=None, *args, **kwargs): if isinstance(preds, paddle.Tensor): preds = preds.numpy() preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True) if label is None: return text label = self.decode(label) return text, label def add_special_char(self, dict_character): dict_character = ['blank'] + dict_character return dict_character class CharacterOps(object): """ Convert between text-label and text-index """ def __init__(self, config): self.character_type = config['character_type'] self.loss_type = config['loss_type'] if self.character_type == "en": self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz" dict_character = list(self.character_str) elif self.character_type == "ch": character_dict_path = config['character_dict_path'] self.character_str = "" with open(character_dict_path, "rb") as fin: lines = fin.readlines() for line in lines: line = line.decode('utf-8').strip("\n").strip("\r\n") self.character_str += line dict_character = list(self.character_str) elif self.character_type == "en_sensitive": # same with ASTER setting (use 94 char). self.character_str = string.printable[:-6] dict_character = list(self.character_str) else: self.character_str = None assert self.character_str is not None, \ "Nonsupport type of the character: {}".format(self.character_str) self.beg_str = "sos" self.end_str = "eos" if self.loss_type == "attention": dict_character = [self.beg_str, self.end_str] + dict_character self.dict = {} for i, char in enumerate(dict_character): self.dict[char] = i self.character = dict_character def encode(self, text): """convert text-label into text-index. input: text: text labels of each image. [batch_size] output: text: concatenated text index for CTCLoss. [sum(text_lengths)] = [text_index_0 + text_index_1 + ... + text_index_(n - 1)] length: length of each text. [batch_size] """ if self.character_type == "en": text = text.lower() text_list = [] for char in text: if char not in self.dict: continue text_list.append(self.dict[char]) text = np.array(text_list) return text def decode(self, text_index, is_remove_duplicate=False): """ convert text-index into text-label. """ char_list = [] char_num = self.get_char_num() if self.loss_type == "attention": beg_idx = self.get_beg_end_flag_idx("beg") end_idx = self.get_beg_end_flag_idx("end") ignored_tokens = [beg_idx, end_idx] else: ignored_tokens = [char_num] for idx in range(len(text_index)): if text_index[idx] in ignored_tokens: continue if is_remove_duplicate: if idx > 0 and text_index[idx - 1] == text_index[idx]: continue char_list.append(self.character[text_index[idx]]) text = ''.join(char_list) return text def get_char_num(self): return len(self.character) def get_beg_end_flag_idx(self, beg_or_end): if self.loss_type == "attention": if beg_or_end == "beg": idx = np.array(self.dict[self.beg_str]) elif beg_or_end == "end": idx = np.array(self.dict[self.end_str]) else: assert False, "Unsupport type %s in get_beg_end_flag_idx"\ % beg_or_end return idx else: err = "error in get_beg_end_flag_idx when using the loss %s"\ % (self.loss_type) assert False, err class OCRReader(object): def __init__(self, algorithm="CRNN", image_shape=[3, 32, 320], char_type="ch", batch_num=1, char_dict_path="./ppocr_keys_v1.txt"): self.rec_image_shape = image_shape self.character_type = char_type self.rec_batch_num = batch_num char_ops_params = {} char_ops_params["character_type"] = char_type char_ops_params["character_dict_path"] = char_dict_path char_ops_params['loss_type'] = 'ctc' self.char_ops = CharacterOps(char_ops_params) self.label_ops = CTCLabelDecode(char_ops_params) def resize_norm_img(self, img, max_wh_ratio): imgC, imgH, imgW = self.rec_image_shape if self.character_type == "ch": imgW = int(32 * max_wh_ratio) h = img.shape[0] w = img.shape[1] ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im def preprocess(self, img_list): img_num = len(img_list) norm_img_batch = [] max_wh_ratio = 0 for ino in range(img_num): h, w = img_list[ino].shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) for ino in range(img_num): norm_img = self.resize_norm_img(img_list[ino], max_wh_ratio) norm_img = norm_img[np.newaxis, :] norm_img_batch.append(norm_img) norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = norm_img_batch.copy() return norm_img_batch[0] def postprocess_old(self, outputs, with_score=False): rec_res = [] rec_idx_lod = outputs["ctc_greedy_decoder_0.tmp_0.lod"] rec_idx_batch = outputs["ctc_greedy_decoder_0.tmp_0"] if with_score: predict_lod = outputs["softmax_0.tmp_0.lod"] for rno in range(len(rec_idx_lod) - 1): beg = rec_idx_lod[rno] end = rec_idx_lod[rno + 1] if isinstance(rec_idx_batch, list): rec_idx_tmp = [x[0] for x in rec_idx_batch[beg:end]] else: #nd array rec_idx_tmp = rec_idx_batch[beg:end, 0] preds_text = self.char_ops.decode(rec_idx_tmp) if with_score: beg = predict_lod[rno] end = predict_lod[rno + 1] if isinstance(outputs["softmax_0.tmp_0"], list): outputs["softmax_0.tmp_0"] = np.array(outputs[ "softmax_0.tmp_0"]).astype(np.float32) probs = outputs["softmax_0.tmp_0"][beg:end, :] ind = np.argmax(probs, axis=1) blank = probs.shape[1] valid_ind = np.where(ind != (blank - 1))[0] score = np.mean(probs[valid_ind, ind[valid_ind]]) rec_res.append([preds_text, score]) else: rec_res.append([preds_text]) return rec_res def postprocess(self, outputs, with_score=False): preds = outputs["save_infer_model/scale_0.tmp_1"] try: preds = preds.numpy() except: pass preds_idx = preds.argmax(axis=2) preds_prob = preds.max(axis=2) text = self.label_ops.decode( preds_idx, preds_prob, is_remove_duplicate=True) return text