#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import os import sys import math import random import numpy as np import cv2 import string import lmdb from ppocr.utils.utility import initial_logger from ppocr.utils.utility import get_image_file_list logger = initial_logger() from .img_tools import process_image, get_img_data class LMDBReader(object): def __init__(self, params): if params['mode'] != 'train': self.num_workers = 1 else: self.num_workers = params['num_workers'] self.lmdb_sets_dir = params['lmdb_sets_dir'] self.char_ops = params['char_ops'] self.image_shape = params['image_shape'] self.loss_type = params['loss_type'] self.max_text_length = params['max_text_length'] self.mode = params['mode'] if params['mode'] == 'train': self.batch_size = params['train_batch_size_per_card'] self.drop_last = params['drop_last'] else: self.batch_size = params['test_batch_size_per_card'] self.infer_img = params['infer_img'] def load_hierarchical_lmdb_dataset(self): lmdb_sets = {} dataset_idx = 0 for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'): if not dirnames: env = lmdb.open( dirpath, max_readers=32, readonly=True, lock=False, readahead=False, meminit=False) txn = env.begin(write=False) num_samples = int(txn.get('num-samples'.encode())) lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \ "txn":txn, "num_samples":num_samples} dataset_idx += 1 return lmdb_sets def print_lmdb_sets_info(self, lmdb_sets): lmdb_info_strs = [] for dataset_idx in range(len(lmdb_sets)): tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'], lmdb_sets[dataset_idx]['num_samples']) lmdb_info_strs.append(tmp_str) lmdb_info_strs = ''.join(lmdb_info_strs) logger.info("DataSummary:" + lmdb_info_strs) return def close_lmdb_dataset(self, lmdb_sets): for dataset_idx in lmdb_sets: lmdb_sets[dataset_idx]['env'].close() return def get_lmdb_sample_info(self, txn, index): label_key = 'label-%09d'.encode() % index label = txn.get(label_key) if label is None: return None label = label.decode('utf-8') img_key = 'image-%09d'.encode() % index imgbuf = txn.get(img_key) img = get_img_data(imgbuf) if img is None: return None return img, label def __call__(self, process_id): if self.mode != 'train': process_id = 0 def sample_iter_reader(): if self.mode != 'train' and self.infer_img is not None: image_file_list = get_image_file_list(self.infer_img) for single_img in image_file_list: img = cv2.imread(single_img) if img.shape[-1] == 1 or len(list(img.shape)) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) norm_img = process_image( img=img, image_shape=self.image_shape, char_ops=self.char_ops) yield norm_img else: lmdb_sets = self.load_hierarchical_lmdb_dataset() if process_id == 0: self.print_lmdb_sets_info(lmdb_sets) cur_index_sets = [1 + process_id] * len(lmdb_sets) while True: finish_read_num = 0 for dataset_idx in range(len(lmdb_sets)): cur_index = cur_index_sets[dataset_idx] if cur_index > lmdb_sets[dataset_idx]['num_samples']: finish_read_num += 1 else: sample_info = self.get_lmdb_sample_info( lmdb_sets[dataset_idx]['txn'], cur_index) cur_index_sets[dataset_idx] += self.num_workers if sample_info is None: continue img, label = sample_info outs = process_image(img, self.image_shape, label, self.char_ops, self.loss_type, self.max_text_length) if outs is None: continue yield outs if finish_read_num == len(lmdb_sets): break self.close_lmdb_dataset(lmdb_sets) def batch_iter_reader(): batch_outs = [] for outs in sample_iter_reader(): batch_outs.append(outs) if len(batch_outs) == self.batch_size: yield batch_outs batch_outs = [] if not self.drop_last: if len(batch_outs) != 0: yield batch_outs if self.mode != 'train' and self.infer_img is None: return batch_iter_reader return sample_iter_reader class SimpleReader(object): def __init__(self, params): if params['mode'] != 'train': self.num_workers = 1 else: self.num_workers = params['num_workers'] if params['mode'] != 'test': self.img_set_dir = params['img_set_dir'] self.label_file_path = params['label_file_path'] self.char_ops = params['char_ops'] self.image_shape = params['image_shape'] self.loss_type = params['loss_type'] self.max_text_length = params['max_text_length'] self.mode = params['mode'] self.infer_img = params['infer_img'] if params['mode'] == 'train': self.batch_size = params['train_batch_size_per_card'] self.drop_last = params['drop_last'] else: self.batch_size = params['test_batch_size_per_card'] def __call__(self, process_id): if self.mode != 'train': process_id = 0 def sample_iter_reader(): if self.infer_img is not None: image_file_list = get_image_file_list(self.infer_img) for single_img in image_file_list: img = cv2.imread(single_img) if img.shape[-1] == 1 or len(list(img.shape)) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) norm_img = process_image( img=img, image_shape=self.image_shape, char_ops=self.char_ops) yield norm_img else: with open(self.label_file_path, "rb") as fin: label_infor_list = fin.readlines() img_num = len(label_infor_list) img_id_list = list(range(img_num)) random.shuffle(img_id_list) if sys.platform == "win32": print("multiprocess is not fully compatible with Windows." "num_workers will be 1.") self.num_workers = 1 for img_id in range(process_id, img_num, self.num_workers): label_infor = label_infor_list[img_id_list[img_id]] substr = label_infor.decode('utf-8').strip("\n").split("\t") img_path = self.img_set_dir + "/" + substr[0] img = cv2.imread(img_path) if img is None: logger.info("{} does not exist!".format(img_path)) continue if img.shape[-1] == 1 or len(list(img.shape)) == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) label = substr[1] outs = process_image(img, self.image_shape, label, self.char_ops, self.loss_type, self.max_text_length) if outs is None: continue yield outs def batch_iter_reader(): batch_outs = [] for outs in sample_iter_reader(): batch_outs.append(outs) if len(batch_outs) == self.batch_size: yield batch_outs batch_outs = [] if not self.drop_last: if len(batch_outs) != 0: yield batch_outs if self.infer_img is None: return batch_iter_reader return sample_iter_reader