// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include namespace PaddleOCR { void Classifier::Run(std::vector img_list, std::vector &cls_labels, std::vector &cls_scores, std::vector ×) { std::chrono::duration preprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now(); std::chrono::duration inference_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now(); std::chrono::duration postprocess_diff = std::chrono::steady_clock::now() - std::chrono::steady_clock::now(); int img_num = img_list.size(); std::vector cls_image_shape = {3, 48, 192}; for (int beg_img_no = 0; beg_img_no < img_num; beg_img_no += this->cls_batch_num_) { auto preprocess_start = std::chrono::steady_clock::now(); int end_img_no = std::min(img_num, beg_img_no + this->cls_batch_num_); int batch_num = end_img_no - beg_img_no; // preprocess std::vector norm_img_batch; for (int ino = beg_img_no; ino < end_img_no; ino++) { cv::Mat srcimg; img_list[ino].copyTo(srcimg); cv::Mat resize_img; this->resize_op_.Run(srcimg, resize_img, this->use_tensorrt_, cls_image_shape); this->normalize_op_.Run(&resize_img, this->mean_, this->scale_, this->is_scale_); if (resize_img.cols < cls_image_shape[2]) { cv::copyMakeBorder(resize_img, resize_img, 0, 0, 0, cls_image_shape[2] - resize_img.cols, cv::BORDER_CONSTANT, cv::Scalar(0, 0, 0)); } norm_img_batch.push_back(resize_img); } std::vector input(batch_num * cls_image_shape[0] * cls_image_shape[1] * cls_image_shape[2], 0.0f); this->permute_op_.Run(norm_img_batch, input.data()); auto preprocess_end = std::chrono::steady_clock::now(); preprocess_diff += preprocess_end - preprocess_start; // inference. auto input_names = this->predictor_->GetInputNames(); auto input_t = this->predictor_->GetInputHandle(input_names[0]); input_t->Reshape({batch_num, cls_image_shape[0], cls_image_shape[1], cls_image_shape[2]}); auto inference_start = std::chrono::steady_clock::now(); input_t->CopyFromCpu(input.data()); this->predictor_->Run(); std::vector predict_batch; auto output_names = this->predictor_->GetOutputNames(); auto output_t = this->predictor_->GetOutputHandle(output_names[0]); auto predict_shape = output_t->shape(); int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1, std::multiplies()); predict_batch.resize(out_num); output_t->CopyToCpu(predict_batch.data()); auto inference_end = std::chrono::steady_clock::now(); inference_diff += inference_end - inference_start; // postprocess auto postprocess_start = std::chrono::steady_clock::now(); for (int batch_idx = 0; batch_idx < predict_shape[0]; batch_idx++) { int label = int( Utility::argmax(&predict_batch[batch_idx * predict_shape[1]], &predict_batch[(batch_idx + 1) * predict_shape[1]])); float score = float(*std::max_element( &predict_batch[batch_idx * predict_shape[1]], &predict_batch[(batch_idx + 1) * predict_shape[1]])); cls_labels[beg_img_no + batch_idx] = label; cls_scores[beg_img_no + batch_idx] = score; } auto postprocess_end = std::chrono::steady_clock::now(); postprocess_diff += postprocess_end - postprocess_start; } times.push_back(double(preprocess_diff.count() * 1000)); times.push_back(double(inference_diff.count() * 1000)); times.push_back(double(postprocess_diff.count() * 1000)); } void Classifier::LoadModel(const std::string &model_dir) { paddle_infer::Config config; config.SetModel(model_dir + "/inference.pdmodel", model_dir + "/inference.pdiparams"); if (this->use_gpu_) { config.EnableUseGpu(this->gpu_mem_, this->gpu_id_); if (this->use_tensorrt_) { auto precision = paddle_infer::Config::Precision::kFloat32; if (this->precision_ == "fp16") { precision = paddle_infer::Config::Precision::kHalf; } if (this->precision_ == "int8") { precision = paddle_infer::Config::Precision::kInt8; } config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false); if (!Utility::PathExists("./trt_cls_shape.txt")) { config.CollectShapeRangeInfo("./trt_cls_shape.txt"); } else { config.EnableTunedTensorRtDynamicShape("./trt_cls_shape.txt", true); } } } else { config.DisableGpu(); if (this->use_mkldnn_) { config.EnableMKLDNN(); } config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_); } // false for zero copy tensor config.SwitchUseFeedFetchOps(false); // true for multiple input config.SwitchSpecifyInputNames(true); config.SwitchIrOptim(true); config.EnableMemoryOptim(); config.DisableGlogInfo(); this->predictor_ = paddle_infer::CreatePredictor(config); } } // namespace PaddleOCR