## 简介 PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。 **近期更新** - 2020.5.30,模型预测、训练支持Windows系统,识别结果的显示进行了优化 - 2020.5.30,开源通用中文OCR模型 - 2020.5.30,提供超轻量级中文OCR在线体验 ## 特性 - 超轻量级中文OCR,总模型仅8.6M - 单模型支持中英文数字组合识别、竖排文本识别、长文本识别 - 检测模型DB(4.1M)+识别模型CRNN(4.5M) - 多种文本检测训练算法,EAST、DB - 多种文本识别训练算法,Rosetta、CRNN、STAR-Net、RARE ### 支持的中文模型列表: |模型名称|模型简介|检测模型地址|识别模型地址| |-|-|-|-| |chinese_db_crnn_mobile|超轻量级中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn.tar)| |chinese_db_crnn_server|通用中文OCR模型|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db.tar)|[inference模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar) & [预训练模型](https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn.tar)| 超轻量级中文OCR在线体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr **也可以按如下教程快速体验超轻量级中文OCR和通用中文OCR模型。** ## **超轻量级中文OCR以及通用中文OCR体验** ![](doc/imgs_results/11.jpg) 上图是超轻量级中文OCR模型效果展示,更多效果图请见文末[效果展示](#效果展示)。 #### 1.环境配置 请先参考[快速安装](./doc/installation.md)配置PaddleOCR运行环境。 #### 2.inference模型下载 #### (1)超轻量级中文OCR模型下载 ``` mkdir inference && cd inference # 下载超轻量级中文OCR模型的检测模型并解压 wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_mv3_db_infer.tar && tar xf ch_det_mv3_db_infer.tar # 下载超轻量级中文OCR模型的识别模型并解压 wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_mv3_crnn_infer.tar && tar xf ch_rec_mv3_crnn_infer.tar cd .. ``` #### (2)通用中文OCR模型下载 ``` mkdir inference && cd inference # 下载通用中文OCR模型的检测模型并解压 wget https://paddleocr.bj.bcebos.com/ch_models/ch_det_r50_vd_db_infer.tar && tar xf ch_det_r50_vd_db_infer.tar # 下载通用中文OCR模型的识别模型并解压 wget https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar && tar xf ch_rec_r34_vd_crnn_infer.tar cd .. ``` #### 3.单张图像或者图像集合预测 以下代码实现了文本检测、识别串联推理,在执行预测时,需要通过参数image_dir指定单张图像或者图像集合的路径、参数det_model_dir指定检测inference模型的路径和参数rec_model_dir指定识别inference模型的路径。可视化识别结果默认保存到 ./inference_results 文件夹里面。 ``` # 设置PYTHONPATH环境变量 export PYTHONPATH=. # 预测image_dir指定的单张图像 python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" # 预测image_dir指定的图像集合 python3 tools/infer/predict_system.py --image_dir="./doc/imgs/" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" # 如果想使用CPU进行预测,需设置use_gpu参数为False python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" --use_gpu=False ``` 通用中文OCR模型的体验可以按照上述步骤下载相应的模型,并且更新相关的参数,示例如下: ``` # 预测image_dir指定的单张图像 python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_r50_vd_db/" --rec_model_dir="./inference/ch_rec_r34_vd_crnn/" ``` 更多的文本检测、识别串联推理使用方式请参考文档教程中[基于预测引擎推理](./doc/inference.md)。 ## 更新 - 2020.5.30,模型预测、训练支持Windows系统,识别结果的显示进行了优化 - 2020.5.30,开源通用中文OCR模型 - 2020.5.30,提供超轻量级中文OCR在线体验 ## 文档教程 - [快速安装](./doc/installation.md) - [文本检测模型训练/评估/预测](./doc/detection.md) - [文本识别模型训练/评估/预测](./doc/recognition.md) - [基于预测引擎推理](./doc/inference.md) ## 文本检测算法 PaddleOCR开源的文本检测算法列表: - [x] EAST([paper](https://arxiv.org/abs/1704.03155)) - [x] DB([paper](https://arxiv.org/abs/1911.08947)) - [ ] SAST([paper](https://arxiv.org/abs/1908.05498))(百度自研, comming soon) 在ICDAR2015文本检测公开数据集上,算法效果如下: |模型|骨干网络|precision|recall|Hmean|下载链接| |-|-|-|-|-|-| |EAST|ResNet50_vd|88.18%|85.51%|86.82%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_east.tar)| |EAST|MobileNetV3|81.67%|79.83%|80.74%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_east.tar)| |DB|ResNet50_vd|83.79%|80.65%|82.19%|[下载链接](https://paddleocr.bj.bcebos.com/det_r50_vd_db.tar)| |DB|MobileNetV3|75.92%|73.18%|74.53%|[下载链接](https://paddleocr.bj.bcebos.com/det_mv3_db.tar)| * 注: 上述DB模型的训练和评估,需设置后处理参数box_thresh=0.6,unclip_ratio=1.5,使用不同数据集、不同模型训练,可调整这两个参数进行优化 PaddleOCR文本检测算法的训练和使用请参考文档教程中[文本检测模型训练/评估/预测](./doc/detection.md)。 ## 文本识别算法 PaddleOCR开源的文本识别算法列表: - [x] CRNN([paper](https://arxiv.org/abs/1507.05717)) - [x] Rosetta([paper](https://arxiv.org/abs/1910.05085)) - [x] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)) - [x] RARE([paper](https://arxiv.org/abs/1603.03915v1)) - [ ] SRN([paper](https://arxiv.org/abs/2003.12294))(百度自研, comming soon) 参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下: |模型|骨干网络|Avg Accuracy|模型存储命名|下载链接| |-|-|-|-|-| |Rosetta|Resnet34_vd|80.24%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_none_ctc.tar)| |Rosetta|MobileNetV3|78.16%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_none_ctc.tar)| |CRNN|Resnet34_vd|82.20%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_none_bilstm_ctc.tar)| |CRNN|MobileNetV3|79.37%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_none_bilstm_ctc.tar)| |STAR-Net|Resnet34_vd|83.93%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_ctc.tar)| |STAR-Net|MobileNetV3|81.56%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_ctc.tar)| |RARE|Resnet34_vd|84.90%|rec_r34_vd_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_r34_vd_tps_bilstm_attn.tar)| |RARE|MobileNetV3|83.32%|rec_mv3_tps_bilstm_attn|[下载链接](https://paddleocr.bj.bcebos.com/rec_mv3_tps_bilstm_attn.tar)| PaddleOCR文本识别算法的训练和使用请参考文档教程中[文本识别模型训练/评估/预测](./doc/recognition.md)。 ## 端到端OCR算法 - [ ] [End2End-PSL](https://arxiv.org/abs/1909.07808)(百度自研, comming soon) ## 效果展示 ![](doc/imgs_results/1.jpg) ![](doc/imgs_results/7.jpg) ![](doc/imgs_results/12.jpg) ![](doc/imgs_results/4.jpg) ![](doc/imgs_results/6.jpg) ![](doc/imgs_results/9.jpg) ![](doc/imgs_results/16.png) ![](doc/imgs_results/22.jpg) ## 参考文献 ``` 1. EAST: @inproceedings{zhou2017east, title={EAST: an efficient and accurate scene text detector}, author={Zhou, Xinyu and Yao, Cong and Wen, He and Wang, Yuzhi and Zhou, Shuchang and He, Weiran and Liang, Jiajun}, booktitle={Proceedings of the IEEE conference on Computer Vision and Pattern Recognition}, pages={5551--5560}, year={2017} } 2. DB: @article{liao2019real, title={Real-time Scene Text Detection with Differentiable Binarization}, author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang}, journal={arXiv preprint arXiv:1911.08947}, year={2019} } 3. DTRB: @inproceedings{baek2019wrong, title={What is wrong with scene text recognition model comparisons? dataset and model analysis}, author={Baek, Jeonghun and Kim, Geewook and Lee, Junyeop and Park, Sungrae and Han, Dongyoon and Yun, Sangdoo and Oh, Seong Joon and Lee, Hwalsuk}, booktitle={Proceedings of the IEEE International Conference on Computer Vision}, pages={4715--4723}, year={2019} } 4. SAST: @inproceedings{wang2019single, title={A Single-Shot Arbitrarily-Shaped Text Detector based on Context Attended Multi-Task Learning}, author={Wang, Pengfei and Zhang, Chengquan and Qi, Fei and Huang, Zuming and En, Mengyi and Han, Junyu and Liu, Jingtuo and Ding, Errui and Shi, Guangming}, booktitle={Proceedings of the 27th ACM International Conference on Multimedia}, pages={1277--1285}, year={2019} } 5. SRN: @article{yu2020towards, title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks}, author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui}, journal={arXiv preprint arXiv:2003.12294}, year={2020} } 6. end2end-psl: @inproceedings{sun2019chinese, title={Chinese Street View Text: Large-scale Chinese Text Reading with Partially Supervised Learning}, author={Sun, Yipeng and Liu, Jiaming and Liu, Wei and Han, Junyu and Ding, Errui and Liu, Jingtuo}, booktitle={Proceedings of the IEEE International Conference on Computer Vision}, pages={9086--9095}, year={2019} } ``` ## 许可证书 本项目的发布受Apache 2.0 license许可认证。 ## 如何贡献代码 我们非常欢迎你为PaddleOCR贡献代码,也十分感谢你的反馈。