# 场景文本识别算法-NRTR - [1. 算法简介](#1) - [2. 环境配置](#2) - [3. 模型训练、评估、预测](#3) - [3.1 训练](#3-1) - [3.2 评估](#3-2) - [3.3 预测](#3-3) - [4. 推理部署](#4) - [4.1 Python推理](#4-1) - [5. FAQ](#5) ## 1. 算法简介 论文信息: > [NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition](https://arxiv.org/abs/1806.00926) > Fenfen Sheng and Zhineng Chen and Bo Xu > ICDAR, 2019 `NRTR`在场景文本识别公开数据集上的精度和模型文件如下: | | Avg accruacy | 下载链接 | 配置文件 | |-----| --- | --- | --- | | NRTR | 84.21% | [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) | [config](../../configs/rec/rec_mtb_nrtr.yml) | ## 2. 环境配置 请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《项目克隆》](./clone.md)克隆项目代码。 ## 3. 模型训练、评估、预测 ### 3.1 模型训练 #### 数据集准备 数据集采用[DTRB](https://arxiv.org/abs/1904.01906) 文字识别训练和评估流程,使用`MJSynth`和`SynthText`两个识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估。 #### 启动训练 请参考[文本识别训练教程](./recognition.md)。PaddleOCR对代码进行了模块化,训练`NRTR`识别模型时需要**更换配置文件**为`NRTR`的[配置文件](../../configs/rec/rec_mtb_nrtr.yml)。 ### 3.2 评估 可下载已训练完成的[模型文件](#model),使用如下命令进行评估: ```shell # 注意将pretrained_model的路径设置为本地路径。 python3 tools/eval.py -c configs/rec/rec_mtb_nrtr.yml -o Global.pretrained_model=./rec_mtb_nrtr_train/best_accuracy ``` ### 3.3 预测 使用如下命令进行单张图片预测: ```shell # 注意将pretrained_model的路径设置为本地路径。 python3 tools/infer_rec.py -c configs/rec/rec_mtb_nrtr.yml -o Global.infer_img='./doc/imgs_words_en/word_10.png' Global.pretrained_model=./rec_mtb_nrtr_train/best_accuracy Global.load_static_weights=false # 预测文件夹下所有图像时,可修改infer_img为文件夹,如 Global.infer_img='./doc/imgs_words_en/'。 ``` ## 4. 推理部署 ### 4.1 Python推理 首先将训练得到best模型,转换成inference model。这里以训练完成的模型为例([模型下载地址](#model)),可以使用如下命令进行转换: ```shell # 注意将pretrained_model的路径设置为本地路径。 python3 tools/export_model.py -c configs/rec/rec_mtb_nrtr.yml -o Global.pretrained_model=./rec_mtb_nrtr_train/best_accuracy Global.save_inference_dir=./inference/rec_mtb_nrtr/ Global.load_static_weights=False ``` 执行如下命令进行模型推理: ```shell python3 tools/infer/predict_rec.py --image_dir='./doc/imgs_words_en/word_10.png' --rec_model_dir='./inference/rec_mtb_nrtr/' --rec_algorithm='NRTR' --rec_image_shape='1,32,100' --rec_char_dict_path='./ppocr/utils/EN_symbol_dict.txt' # 预测文件夹下所有图像时,可修改image_dir为文件夹,如 --image_dir='./doc/imgs_words_en/'。 ``` ## 5. FAQ 1. `NRTR`论文中使用Beam搜索进行解码字符,但是速度较慢,这里默认未使用Beam搜索,以贪婪搜索进行解码字符。