# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from paddle import optimizer as optim class Momentum(object): """ Simple Momentum optimizer with velocity state. Args: learning_rate (float|Variable) - The learning rate used to update parameters. Can be a float value or a Variable with one float value as data element. momentum (float) - Momentum factor. regularization (WeightDecayRegularizer, optional) - The strategy of regularization. """ def __init__(self, learning_rate, momentum, weight_decay=None, grad_clip=None, **args): super(Momentum, self).__init__() self.learning_rate = learning_rate self.momentum = momentum self.weight_decay = weight_decay self.grad_clip = grad_clip def __call__(self, model): opt = optim.Momentum( learning_rate=self.learning_rate, momentum=self.momentum, weight_decay=self.weight_decay, grad_clip=self.grad_clip, parameters=model.parameters()) return opt class Adam(object): def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, parameter_list=None, weight_decay=None, grad_clip=None, name=None, lazy_mode=False, **kwargs): self.learning_rate = learning_rate self.beta1 = beta1 self.beta2 = beta2 self.epsilon = epsilon self.parameter_list = parameter_list self.learning_rate = learning_rate self.weight_decay = weight_decay self.grad_clip = grad_clip self.name = name self.lazy_mode = lazy_mode def __call__(self, model): opt = optim.Adam( learning_rate=self.learning_rate, beta1=self.beta1, beta2=self.beta2, epsilon=self.epsilon, weight_decay=self.weight_decay, grad_clip=self.grad_clip, name=self.name, lazy_mode=self.lazy_mode, parameters=model.parameters()) return opt class RMSProp(object): """ Root Mean Squared Propagation (RMSProp) is an unpublished, adaptive learning rate method. Args: learning_rate (float|Variable) - The learning rate used to update parameters. Can be a float value or a Variable with one float value as data element. momentum (float) - Momentum factor. rho (float) - rho value in equation. epsilon (float) - avoid division by zero, default is 1e-6. regularization (WeightDecayRegularizer, optional) - The strategy of regularization. """ def __init__(self, learning_rate, momentum=0.0, rho=0.95, epsilon=1e-6, weight_decay=None, grad_clip=None, **args): super(RMSProp, self).__init__() self.learning_rate = learning_rate self.momentum = momentum self.rho = rho self.epsilon = epsilon self.weight_decay = weight_decay self.grad_clip = grad_clip def __call__(self, model): opt = optim.RMSProp( learning_rate=self.learning_rate, momentum=self.momentum, rho=self.rho, epsilon=self.epsilon, weight_decay=self.weight_decay, grad_clip=self.grad_clip, parameters=model.parameters()) return opt class Adadelta(object): def __init__(self, learning_rate=0.001, epsilon=1e-08, rho=0.95, parameter_list=None, weight_decay=None, grad_clip=None, name=None, **kwargs): self.learning_rate = learning_rate self.epsilon = epsilon self.rho = rho self.parameter_list = parameter_list self.learning_rate = learning_rate self.weight_decay = weight_decay self.grad_clip = grad_clip self.name = name def __call__(self, model): opt = optim.Adadelta( learning_rate=self.learning_rate, epsilon=self.epsilon, rho=self.rho, weight_decay=self.weight_decay, grad_clip=self.grad_clip, name=self.name, parameters=model.parameters()) return opt class AdamW(object): def __init__(self, learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-8, weight_decay=0.01, multi_precision=False, grad_clip=None, no_weight_decay_name=None, one_dim_param_no_weight_decay=False, name=None, lazy_mode=False, **args): super().__init__() self.learning_rate = learning_rate self.beta1 = beta1 self.beta2 = beta2 self.epsilon = epsilon self.grad_clip = grad_clip self.weight_decay = 0.01 if weight_decay is None else weight_decay self.grad_clip = grad_clip self.name = name self.lazy_mode = lazy_mode self.multi_precision = multi_precision self.no_weight_decay_name_list = no_weight_decay_name.split( ) if no_weight_decay_name else [] self.one_dim_param_no_weight_decay = one_dim_param_no_weight_decay def __call__(self, model): parameters = model.parameters() self.no_weight_decay_param_name_list = [ p.name for n, p in model.named_parameters() if any(nd in n for nd in self.no_weight_decay_name_list) ] if self.one_dim_param_no_weight_decay: self.no_weight_decay_param_name_list += [ p.name for n, p in model.named_parameters() if len(p.shape) == 1 ] opt = optim.AdamW( learning_rate=self.learning_rate, beta1=self.beta1, beta2=self.beta2, epsilon=self.epsilon, parameters=parameters, weight_decay=self.weight_decay, multi_precision=self.multi_precision, grad_clip=self.grad_clip, name=self.name, lazy_mode=self.lazy_mode, apply_decay_param_fun=self._apply_decay_param_fun) return opt def _apply_decay_param_fun(self, name): return name not in self.no_weight_decay_param_name_list