# SRN - [1. Introduction](#1) - [2. Environment](#2) - [3. Model Training / Evaluation / Prediction](#3) - [3.1 Training](#3-1) - [3.2 Evaluation](#3-2) - [3.3 Prediction](#3-3) - [4. Inference and Deployment](#4) - [4.1 Python Inference](#4-1) - [4.2 C++ Inference](#4-2) - [4.3 Serving](#4-3) - [4.4 More](#4-4) - [5. FAQ](#5) ## 1. Introduction Paper: > [Towards Accurate Scene Text Recognition with Semantic Reasoning Networks](https://arxiv.org/abs/2003.12294#) > Deli Yu, Xuan Li, Chengquan Zhang, Junyu Han, Jingtuo Liu, Errui Ding > CVPR,2020 Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows: |Model|Backbone|config|Acc|Download link| | --- | --- | --- | --- | --- | --- | --- | |SRN|Resnet50_vd_fpn|[rec_r50_fpn_srn.yml](../../configs/rec/rec_r50_fpn_srn.yml)|86.31%|[train model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar)| ## 2. Environment Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code. ## 3. Model Training / Evaluation / Prediction Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**. Training: Specifically, after the data preparation is completed, the training can be started. The training command is as follows: ``` #Single GPU training (long training period, not recommended) python3 tools/train.py -c configs/rec/rec_r50_fpn_srn.yml #Multi GPU training, specify the gpu number through the --gpus parameter python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/rec/rec_r50_fpn_srn.yml ``` Evaluation: ``` # GPU evaluation python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy ``` Prediction: ``` # The configuration file used for prediction must match the training python3 tools/infer_rec.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png ``` ## 4. Inference and Deployment ### 4.1 Python Inference First, the model saved during the SRN text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) ), you can use the following command to convert: ``` python3 tools/export_model.py -c configs/rec/rec_r50_fpn_srn.yml -o Global.pretrained_model=./rec_r50_vd_srn_train/best_accuracy Global.save_inference_dir=./inference/rec_srn ``` For SRN text recognition model inference, the following commands can be executed: ``` python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/en/word_1.png" --rec_model_dir="./inference/rec_srn/" --rec_image_shape="1,64,256" --rec_char_type="ch" --rec_algorithm="SRN" --rec_char_dict_path="ppocr/utils/ic15_dict.txt" --use_space_char=False ``` ### 4.2 C++ Inference Not supported ### 4.3 Serving Not supported ### 4.4 More Not supported ## 5. FAQ ## Citation ```bibtex @article{Yu2020TowardsAS, title={Towards Accurate Scene Text Recognition With Semantic Reasoning Networks}, author={Deli Yu and Xuan Li and Chengquan Zhang and Junyu Han and Jingtuo Liu and Errui Ding}, journal={2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)}, year={2020}, pages={12110-12119} } ```