# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys __dir__ = os.path.dirname(os.path.abspath(__file__)) sys.path.append(__dir__) sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..'))) os.environ["FLAGS_allocator_strategy"] = 'auto_growth' import cv2 import json import numpy as np import time import tools.infer.utility as utility from tools.infer_kie_token_ser_re import make_input from ppocr.postprocess import build_post_process from ppocr.utils.logging import get_logger from ppocr.utils.visual import draw_re_results from ppocr.utils.utility import get_image_file_list, check_and_read from ppstructure.utility import parse_args from ppstructure.kie.predict_kie_token_ser import SerPredictor from paddleocr import PaddleOCR logger = get_logger() class SerRePredictor(object): def __init__(self, args): self.use_visual_backbone = args.use_visual_backbone self.ser_engine = SerPredictor(args) postprocess_params = {'name': 'VQAReTokenLayoutLMPostProcess'} self.postprocess_op = build_post_process(postprocess_params) self.predictor, self.input_tensor, self.output_tensors, self.config = \ utility.create_predictor(args, 're', logger) def __call__(self, img): ori_im = img.copy() starttime = time.time() ser_results, ser_inputs, _ = self.ser_engine(img) re_input, entity_idx_dict_batch = make_input(ser_inputs, ser_results) if self.use_visual_backbone == False: re_input.pop(4) for idx in range(len(self.input_tensor)): self.input_tensor[idx].copy_from_cpu(re_input[idx]) self.predictor.run() outputs = [] for output_tensor in self.output_tensors: output = output_tensor.copy_to_cpu() outputs.append(output) preds = dict( loss=outputs[1], pred_relations=outputs[2], hidden_states=outputs[0], ) post_result = self.postprocess_op( preds, ser_results=ser_results, entity_idx_dict_batch=entity_idx_dict_batch) elapse = time.time() - starttime return post_result, elapse def main(args): image_file_list = get_image_file_list(args.image_dir) ser_predictor = SerRePredictor(args) count = 0 total_time = 0 os.makedirs(args.output, exist_ok=True) with open( os.path.join(args.output, 'infer.txt'), mode='w', encoding='utf-8') as f_w: for image_file in image_file_list: img, flag, _ = check_and_read(image_file) if not flag: img = cv2.imread(image_file) img = img[:, :, ::-1] if img is None: logger.info("error in loading image:{}".format(image_file)) continue re_res, elapse = ser_predictor(img) re_res = re_res[0] res_str = '{}\t{}\n'.format( image_file, json.dumps( { "ocr_info": re_res, }, ensure_ascii=False)) f_w.write(res_str) img_res = draw_re_results( image_file, re_res, font_path=args.vis_font_path) img_save_path = os.path.join( args.output, os.path.splitext(os.path.basename(image_file))[0] + "_ser_re.jpg") cv2.imwrite(img_save_path, img_res) logger.info("save vis result to {}".format(img_save_path)) if count > 0: total_time += elapse count += 1 logger.info("Predict time of {}: {}".format(image_file, elapse)) if __name__ == "__main__": main(parse_args())