# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from paddle import nn class VLLoss(nn.Layer): def __init__(self, mode='LF_1', weight_res=0.5, weight_mas=0.5, **kwargs): super(VLLoss, self).__init__() self.loss_func = paddle.nn.loss.CrossEntropyLoss(reduction="mean") assert mode in ['LF_1', 'LF_2', 'LA'] self.mode = mode self.weight_res = weight_res self.weight_mas = weight_mas def flatten_label(self, target): label_flatten = [] label_length = [] for i in range(0, target.shape[0]): cur_label = target[i].tolist() label_flatten += cur_label[:cur_label.index(0) + 1] label_length.append(cur_label.index(0) + 1) label_flatten = paddle.to_tensor(label_flatten, dtype='int64') label_length = paddle.to_tensor(label_length, dtype='int32') return (label_flatten, label_length) def _flatten(self, sources, lengths): return paddle.concat([t[:l] for t, l in zip(sources, lengths)]) def forward(self, predicts, batch): text_pre = predicts[0] target = batch[1].astype('int64') label_flatten, length = self.flatten_label(target) text_pre = self._flatten(text_pre, length) if self.mode == 'LF_1': loss = self.loss_func(text_pre, label_flatten) else: text_rem = predicts[1] text_mas = predicts[2] target_res = batch[2].astype('int64') target_sub = batch[3].astype('int64') label_flatten_res, length_res = self.flatten_label(target_res) label_flatten_sub, length_sub = self.flatten_label(target_sub) text_rem = self._flatten(text_rem, length_res) text_mas = self._flatten(text_mas, length_sub) loss_ori = self.loss_func(text_pre, label_flatten) loss_res = self.loss_func(text_rem, label_flatten_res) loss_mas = self.loss_func(text_mas, label_flatten_sub) loss = loss_ori + loss_res * self.weight_res + loss_mas * self.weight_mas return {'loss': loss}