# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--cls_model", required=True, help="Path of Classification model of PPOCR.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu', 'kunlunxin' or 'gpu'.") parser.add_argument( "--device_id", type=int, default=0, help="Define which GPU card used to run model.") return parser.parse_args() def build_option(args): cls_option = fd.RuntimeOption() if args.device.lower() == "gpu": cls_option.use_gpu(args.device_id) return cls_option args = parse_arguments() cls_model_file = os.path.join(args.cls_model, "inference.pdmodel") cls_params_file = os.path.join(args.cls_model, "inference.pdiparams") # Set the runtime option cls_option = build_option(args) # Create the cls_model cls_model = fd.vision.ocr.Classifier( cls_model_file, cls_params_file, runtime_option=cls_option) # Set the postprocessing parameters cls_model.postprocessor.cls_thresh = 0.9 # Read the image im = cv2.imread(args.image) # Predict and return the results result = cls_model.predict(im) # User can infer a batch of images by following code. # result = cls_model.batch_predict([im]) print(result)