# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse import ast parser = argparse.ArgumentParser() parser.add_argument( "--det_model", required=True, help="Path of Detection model of PPOCR.") parser.add_argument( "--cls_model", required=True, help="Path of Classification model of PPOCR.") parser.add_argument( "--rec_model", required=True, help="Path of Recognization model of PPOCR.") parser.add_argument( "--rec_label_file", required=True, help="Path of Recognization model of PPOCR.") parser.add_argument( "--image", type=str, required=True, help="Path of test image file.") parser.add_argument( "--device", type=str, default='cpu', help="Type of inference device, support 'cpu' or 'gpu'.") parser.add_argument( "--device_id", type=int, default=0, help="Define which GPU card used to run model.") parser.add_argument( "--cls_bs", type=int, default=1, help="Classification model inference batch size.") parser.add_argument( "--rec_bs", type=int, default=6, help="Recognition model inference batch size") parser.add_argument( "--backend", type=str, default="default", help="Type of inference backend, support ort/trt/paddle/openvino, default 'openvino' for cpu, 'tensorrt' for gpu" ) return parser.parse_args() def build_option(args): det_option = fd.RuntimeOption() cls_option = fd.RuntimeOption() rec_option = fd.RuntimeOption() if args.device.lower() == "gpu": det_option.use_gpu(args.device_id) cls_option.use_gpu(args.device_id) rec_option.use_gpu(args.device_id) if args.backend.lower() == "trt": assert args.device.lower( ) == "gpu", "TensorRT backend require inference on device GPU." det_option.use_trt_backend() cls_option.use_trt_backend() rec_option.use_trt_backend() # If use TRT backend, the dynamic shape will be set as follow. # We recommend that users set the length and height of the detection model to a multiple of 32. # We also recommend that users set the Trt input shape as follow. det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960]) cls_option.set_trt_input_shape("x", [1, 3, 48, 10], [args.cls_bs, 3, 48, 320], [args.cls_bs, 3, 48, 1024]) rec_option.set_trt_input_shape("x", [1, 3, 48, 10], [args.rec_bs, 3, 48, 320], [args.rec_bs, 3, 48, 2304]) # Users could save TRT cache file to disk as follow. det_option.set_trt_cache_file(args.det_model + "/det_trt_cache.trt") cls_option.set_trt_cache_file(args.cls_model + "/cls_trt_cache.trt") rec_option.set_trt_cache_file(args.rec_model + "/rec_trt_cache.trt") elif args.backend.lower() == "pptrt": assert args.device.lower( ) == "gpu", "Paddle-TensorRT backend require inference on device GPU." det_option.use_trt_backend() det_option.enable_paddle_trt_collect_shape() det_option.enable_paddle_to_trt() cls_option.use_trt_backend() cls_option.enable_paddle_trt_collect_shape() cls_option.enable_paddle_to_trt() rec_option.use_trt_backend() rec_option.enable_paddle_trt_collect_shape() rec_option.enable_paddle_to_trt() # If use TRT backend, the dynamic shape will be set as follow. # We recommend that users set the length and height of the detection model to a multiple of 32. # We also recommend that users set the Trt input shape as follow. det_option.set_trt_input_shape("x", [1, 3, 64, 64], [1, 3, 640, 640], [1, 3, 960, 960]) cls_option.set_trt_input_shape("x", [1, 3, 48, 10], [args.cls_bs, 3, 48, 320], [args.cls_bs, 3, 48, 1024]) rec_option.set_trt_input_shape("x", [1, 3, 48, 10], [args.rec_bs, 3, 48, 320], [args.rec_bs, 3, 48, 2304]) # Users could save TRT cache file to disk as follow. det_option.set_trt_cache_file(args.det_model) cls_option.set_trt_cache_file(args.cls_model) rec_option.set_trt_cache_file(args.rec_model) elif args.backend.lower() == "ort": det_option.use_ort_backend() cls_option.use_ort_backend() rec_option.use_ort_backend() elif args.backend.lower() == "paddle": det_option.use_paddle_infer_backend() cls_option.use_paddle_infer_backend() rec_option.use_paddle_infer_backend() elif args.backend.lower() == "openvino": assert args.device.lower( ) == "cpu", "OpenVINO backend require inference on device CPU." det_option.use_openvino_backend() cls_option.use_openvino_backend() rec_option.use_openvino_backend() elif args.backend.lower() == "pplite": assert args.device.lower( ) == "cpu", "Paddle Lite backend require inference on device CPU." det_option.use_lite_backend() cls_option.use_lite_backend() rec_option.use_lite_backend() return det_option, cls_option, rec_option args = parse_arguments() det_model_file = os.path.join(args.det_model, "inference.pdmodel") det_params_file = os.path.join(args.det_model, "inference.pdiparams") cls_model_file = os.path.join(args.cls_model, "inference.pdmodel") cls_params_file = os.path.join(args.cls_model, "inference.pdiparams") rec_model_file = os.path.join(args.rec_model, "inference.pdmodel") rec_params_file = os.path.join(args.rec_model, "inference.pdiparams") rec_label_file = args.rec_label_file det_option, cls_option, rec_option = build_option(args) det_model = fd.vision.ocr.DBDetector( det_model_file, det_params_file, runtime_option=det_option) cls_model = fd.vision.ocr.Classifier( cls_model_file, cls_params_file, runtime_option=cls_option) rec_model = fd.vision.ocr.Recognizer( rec_model_file, rec_params_file, rec_label_file, runtime_option=rec_option) # Parameters settings for pre and post processing of Det/Cls/Rec Models. # All parameters are set to default values. det_model.preprocessor.max_side_len = 960 det_model.postprocessor.det_db_thresh = 0.3 det_model.postprocessor.det_db_box_thresh = 0.6 det_model.postprocessor.det_db_unclip_ratio = 1.5 det_model.postprocessor.det_db_score_mode = "slow" det_model.postprocessor.use_dilation = False cls_model.postprocessor.cls_thresh = 0.9 # Create PP-OCRv3, if cls_model is not needed, just set cls_model=None . ppocr_v3 = fd.vision.ocr.PPOCRv3( det_model=det_model, cls_model=cls_model, rec_model=rec_model) # Set inference batch size for cls model and rec model, the value could be -1 and 1 to positive infinity. # When inference batch size is set to -1, it means that the inference batch size # of the cls and rec models will be the same as the number of boxes detected by the det model. ppocr_v3.cls_batch_size = args.cls_bs ppocr_v3.rec_batch_size = args.rec_bs # Read the input image im = cv2.imread(args.image) # Predict and reutrn the results result = ppocr_v3.predict(im) print(result) # Visuliaze the results. vis_im = fd.vision.vis_ppocr(im, result) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")