// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. using System; using System.IO; using System.Runtime.InteropServices; using OpenCvSharp; using fastdeploy; namespace Test { public class TestPPOCRv3 { public static void Main(string[] args) { if (args.Length < 6) { Console.WriteLine( "Usage: infer_demo path/to/det_model path/to/cls_model " + "path/to/rec_model path/to/rec_label_file path/to/image " + "run_option, " + "e.g ./infer_demo ./ch_PP-OCRv2_det_infer " + "./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv2_rec_infer " + "./ppocr_keys_v1.txt ./12.jpg 0" ); Console.WriteLine( "The data type of run_option is int, 0: run with cpu; 1: run with gpu"); return; } string det_model_dir = args[0]; string cls_model_dir = args[1]; string rec_model_dir = args[2]; string rec_label_file = args[3]; string image_path = args[4]; RuntimeOption runtimeoption = new RuntimeOption(); int device_option = Int32.Parse(args[5]); if(device_option==0){ runtimeoption.UseCpu(); }else{ runtimeoption.UseGpu(); } string sep = "\\"; string det_model_file = det_model_dir + sep + "inference.pdmodel"; string det_params_file = det_model_dir + sep + "inference.pdiparams"; string cls_model_file = cls_model_dir + sep + "inference.pdmodel"; string cls_params_file = cls_model_dir + sep + "inference.pdiparams"; string rec_model_file = rec_model_dir + sep + "inference.pdmodel"; string rec_params_file = rec_model_dir + sep + "inference.pdiparams"; fastdeploy.vision.ocr.DBDetector dbdetector = new fastdeploy.vision.ocr.DBDetector(det_model_file, det_params_file, runtimeoption, ModelFormat.PADDLE); fastdeploy.vision.ocr.Classifier classifier = new fastdeploy.vision.ocr.Classifier(cls_model_file, cls_params_file, runtimeoption, ModelFormat.PADDLE); fastdeploy.vision.ocr.Recognizer recognizer = new fastdeploy.vision.ocr.Recognizer(rec_model_file, rec_params_file, rec_label_file, runtimeoption, ModelFormat.PADDLE); fastdeploy.pipeline.PPOCRv3 model = new fastdeploy.pipeline.PPOCRv3(dbdetector, classifier, recognizer); if(!model.Initialized()){ Console.WriteLine("Failed to initialize.\n"); } Mat image = Cv2.ImRead(image_path); fastdeploy.vision.OCRResult res = model.Predict(image); Console.WriteLine(res.ToString()); Mat res_img = fastdeploy.vision.Visualize.VisOcr(image, res); Cv2.ImShow("result.png", res_img); Cv2.ImWrite("result.png", res_img); Cv2.WaitKey(0); } } }