import paddle from paddle import nn import paddle.nn.functional as F class CESmoothingLoss(nn.Layer): def __init__(self, smoothing=True, with_all=False, **kwargs): super(CESmoothingLoss, self).__init__() self.loss_func = nn.CrossEntropyLoss(reduction='mean', ignore_index=0) self.smoothing = smoothing self.with_all = with_all def forward(self, pred, batch): pred = pred.reshape([-1, pred.shape[2]]) if self.with_all: tgt = batch[1] else: max_len = batch[2].max() tgt = batch[1][:, 1:2 + max_len] tgt = tgt.reshape([-1]) if self.smoothing: eps = 0.1 n_class = pred.shape[1] one_hot = F.one_hot(tgt, pred.shape[1]) one_hot = one_hot * (1 - eps) + (1 - one_hot) * eps / (n_class - 1) log_prb = F.log_softmax(pred, axis=1) non_pad_mask = paddle.not_equal( tgt, paddle.zeros( tgt.shape, dtype=tgt.dtype)) loss = -(one_hot * log_prb).sum(axis=1) loss = loss.masked_select(non_pad_mask).mean() else: loss = self.loss_func(pred, tgt) return {'loss': loss}