Global: algorithm: DB use_gpu: true epoch_num: 1200 log_smooth_window: 20 print_batch_step: 2 save_model_dir: ./output/det_db/ save_epoch_step: 200 # evaluation is run every 5000 iterations after the 4000th iteration eval_batch_step: [4000, 5000] train_batch_size_per_card: 16 test_batch_size_per_card: 16 image_shape: [3, 640, 640] reader_yml: ./configs/det/det_db_icdar15_reader.yml pretrain_weights: ./pretrain_models/MobileNetV3_large_x0_5_pretrained/ checkpoints: save_res_path: ./output/det_db/predicts_db.txt save_inference_dir: infer_img: Architecture: function: ppocr.modeling.architectures.det_model,DetModel Backbone: function: ppocr.modeling.backbones.det_mobilenet_v3,MobileNetV3 scale: 0.5 model_name: large disable_se: true Head: function: ppocr.modeling.heads.det_db_head,DBHead model_name: large k: 50 inner_channels: 96 out_channels: 2 Loss: function: ppocr.modeling.losses.det_db_loss,DBLoss balance_loss: true main_loss_type: DiceLoss alpha: 5 beta: 10 ohem_ratio: 3 Optimizer: function: ppocr.optimizer,AdamDecay base_lr: 0.001 beta1: 0.9 beta2: 0.999 decay: function: cosine_decay_warmup step_each_epoch: 16 total_epoch: 1200 PostProcess: function: ppocr.postprocess.db_postprocess,DBPostProcess thresh: 0.3 box_thresh: 0.6 max_candidates: 1000 unclip_ratio: 1.5