[English](../doc_en/PP-OCRv3_introduction_en.md) | 简体中文 # PP-OCRv3 - [1. 简介](#1) - [2. 检测优化](#2) - [3. 识别优化](#3) - [4. 端到端评估](#4) ## 1. 简介 PP-OCRv3在PP-OCRv2的基础上进一步升级。检测模型仍然基于DB算法,优化策略采用了带残差注意力机制的FPN结构RSEFPN、增大感受野的PAN结构LKPAN、基于DML训练的更优的教师模型;识别模型将base模型从CRNN替换成了IJCAI 2022论文[SVTR](),并采用SVTR轻量化、带指导训练CTC、数据增广策略RecConAug、自监督训练的更好的预训练模型、无标签数据的使用进行模型加速和效果提升。更多细节请参考PP-OCRv3[技术报告](./PP-OCRv3_introduction.md)。 PP-OCRv3系统pipeline如下: