# 配置文件内容与生成 [toc] ## 1. 可选参数列表 以下列表可以通过`--help`查看 | FLAG | 支持脚本 | 用途 | 默认值 | 备注 | | :----------------------: | :------------: | :---------------: | :--------------: | :-----------------: | | -c | ALL | 指定配置文件 | None | **配置模块说明请参考 参数介绍** | | -o | ALL | 设置配置文件里的参数内容 | None | 使用-o配置相较于-c选择的配置文件具有更高的优先级。例如:`-o Global.use_gpu=false` | ## 2. 配置文件参数介绍 以 `rec_chinese_lite_train_v2.0.yml ` 为例 ### 2.1 Global | 字段 | 用途 | 默认值 | 备注 | | :----------------------: | :---------------------: | :--------------: | :--------------------: | | use_gpu | 设置代码是否在gpu运行 | true | \ | | epoch_num | 最大训练epoch数 | 500 | \ | | log_smooth_window | log队列长度,每次打印输出队列里的中间值 | 20 | \ | | print_batch_step | 设置打印log间隔 | 10 | \ | | save_model_dir | 设置模型保存路径 | output/{算法名称} | \ | | save_epoch_step | 设置模型保存间隔 | 3 | \ | | eval_batch_step | 设置模型评估间隔 | 2000 或 [1000, 2000] | 2000 表示每2000次迭代评估一次,[1000, 2000]表示从1000次迭代开始,每2000次评估一次 | | cal_metric_during_train | 设置是否在训练过程中评估指标,此时评估的是模型在当前batch下的指标 | true | \ | | load_static_weights | 设置预训练模型是否是静态图模式保存(目前仅检测算法需要) | true | \ | | pretrained_model | 设置加载预训练模型路径 | ./pretrain_models/CRNN/best_accuracy | \ | | checkpoints | 加载模型参数路径 | None | 用于中断后加载参数继续训练 | | use_visualdl | 设置是否启用visualdl进行可视化log展示 | False | [教程地址](https://www.paddlepaddle.org.cn/paddle/visualdl) | | infer_img | 设置预测图像路径或文件夹路径 | ./infer_img | \| | character_dict_path | 设置字典路径 | ./ppocr/utils/ppocr_keys_v1.txt | \ | | max_text_length | 设置文本最大长度 | 25 | \ | | character_type | 设置字符类型 | ch | en/ch, en时将使用默认dict,ch时使用自定义dict| | use_space_char | 设置是否识别空格 | True | 仅在 character_type=ch 时支持空格 | | label_list | 设置方向分类器支持的角度 | ['0','180'] | 仅在方向分类器中生效 | | save_res_path | 设置检测模型的结果保存地址 | ./output/det_db/predicts_db.txt | 仅在检测模型中生效 | ### Optimizer ([ppocr/optimizer](../../ppocr/optimizer)) | 字段 | 用途 | 默认值 | 备注 | | :---------------------: | :---------------------: | :--------------: | :--------------------: | | name | 优化器类名 | Adam | 目前支持`Momentum`,`Adam`,`RMSProp`, 见[ppocr/optimizer/optimizer.py](../../ppocr/optimizer/optimizer.py) | | beta1 | 设置一阶矩估计的指数衰减率 | 0.9 | \ | | beta2 | 设置二阶矩估计的指数衰减率 | 0.999 | \ | | clip_norm | 所允许的二范数最大值 | | \ | | **lr** | 设置学习率decay方式 | - | \ | | name | 学习率decay类名 | Cosine | 目前支持`Linear`,`Cosine`,`Step`,`Piecewise`, 见[ppocr/optimizer/learning_rate.py](../../ppocr/optimizer/learning_rate.py) | | learning_rate | 基础学习率 | 0.001 | \ | | **regularizer** | 设置网络正则化方式 | - | \ | | name | 正则化类名 | L2 | 目前支持`L1`,`L2`, 见[ppocr/optimizer/regularizer.py](../../ppocr/optimizer/regularizer.py) | | factor | 学习率衰减系数 | 0.00004 | \ | ### Architecture ([ppocr/modeling](../../ppocr/modeling)) 在ppocr中,网络被划分为Transform,Backbone,Neck和Head四个阶段 | 字段 | 用途 | 默认值 | 备注 | | :---------------------: | :---------------------: | :--------------: | :--------------------: | | model_type | 网络类型 | rec | 目前支持`rec`,`det`,`cls` | | algorithm | 模型名称 | CRNN | 支持列表见[algorithm_overview](./algorithm_overview.md) | | **Transform** | 设置变换方式 | - | 目前仅rec类型的算法支持, 具体见[ppocr/modeling/transform](../../ppocr/modeling/transform) | | name | 变换方式类名 | TPS | 目前支持`TPS` | | num_fiducial | TPS控制点数 | 20 | 上下边各十个 | | loc_lr | 定位网络学习率 | 0.1 | \ | | model_name | 定位网络大小 | small | 目前支持`small`,`large` | | **Backbone** | 设置网络backbone类名 | - | 具体见[ppocr/modeling/backbones](../../ppocr/modeling/backbones) | | name | backbone类名 | ResNet | 目前支持`MobileNetV3`,`ResNet` | | layers | resnet层数 | 34 | 支持18,34,50,101,152,200 | | model_name | MobileNetV3 网络大小 | small | 支持`small`,`large` | | **Neck** | 设置网络neck | - | 具体见[ppocr/modeling/necks](../../ppocr/modeling/necks) | | name | neck类名 | SequenceEncoder | 目前支持`SequenceEncoder`,`DBFPN` | | encoder_type | SequenceEncoder编码器类型 | rnn | 支持`reshape`,`fc`,`rnn` | | hidden_size | rnn内部单元数 | 48 | \ | | out_channels | DBFPN输出通道数 | 256 | \ | | **Head** | 设置网络Head | - | 具体见[ppocr/modeling/heads](../../ppocr/modeling/heads) | | name | head类名 | CTCHead | 目前支持`CTCHead`,`DBHead`,`ClsHead` | | fc_decay | CTCHead正则化系数 | 0.0004 | \ | | k | DBHead二值化系数 | 50 | \ | | class_dim | ClsHead输出分类数 | 2 | \ | ### Loss ([ppocr/losses](../../ppocr/losses)) | 字段 | 用途 | 默认值 | 备注 | | :---------------------: | :---------------------: | :--------------: | :--------------------: | | name | 网络loss类名 | CTCLoss | 目前支持`CTCLoss`,`DBLoss`,`ClsLoss` | | balance_loss | DBLossloss中是否对正负样本数量进行均衡(使用OHEM) | True | \ | | ohem_ratio | DBLossloss中的OHEM的负正样本比例 | 3 | \ | | main_loss_type | DBLossloss中shrink_map所采用的的loss | DiceLoss | 支持`DiceLoss`,`BCELoss` | | alpha | DBLossloss中shrink_map_loss的系数 | 5 | \ | | beta | DBLossloss中threshold_map_loss的系数 | 10 | \ | ### PostProcess ([ppocr/postprocess](../../ppocr/postprocess)) | 字段 | 用途 | 默认值 | 备注 | | :---------------------: | :---------------------: | :--------------: | :--------------------: | | name | 后处理类名 | CTCLabelDecode | 目前支持`CTCLoss`,`AttnLabelDecode`,`DBPostProcess`,`ClsPostProcess` | | thresh | DBPostProcess中分割图进行二值化的阈值 | 0.3 | \ | | box_thresh | DBPostProcess中对输出框进行过滤的阈值,低于此阈值的框不会输出 | 0.7 | \ | | max_candidates | DBPostProcess中输出的最大文本框数量 | 1000 | | | unclip_ratio | DBPostProcess中对文本框进行放大的比例 | 2.0 | \ | ### Metric ([ppocr/metrics](../../ppocr/metrics)) | 字段 | 用途 | 默认值 | 备注 | | :---------------------: | :---------------------: | :--------------: | :--------------------: | | name | 指标评估方法名称 | CTCLabelDecode | 目前支持`DetMetric`,`RecMetric`,`ClsMetric` | | main_indicator | 主要指标,用于选取最优模型 | acc | 对于检测方法为hmean,识别和分类方法为acc | ### Dataset ([ppocr/data](../../ppocr/data)) | 字段 | 用途 | 默认值 | 备注 | | :---------------------: | :---------------------: | :--------------: | :--------------------: | | **dataset** | 每次迭代返回一个样本 | - | - | | name | dataset类名 | SimpleDataSet | 目前支持`SimpleDataSet`和`LMDBDataSet` | | data_dir | 数据集图片存放路径 | ./train_data | \ | | label_file_list | 数据标签路径 | ["./train_data/train_list.txt"] | dataset为LMDBDataSet时不需要此参数 | | ratio_list | 数据集的比例 | [1.0] | 若label_file_list中有两个train_list,且ratio_list为[0.4,0.6],则从train_list1中采样40%,从train_list2中采样60%组合整个dataset | | transforms | 对图片和标签进行变换的方法列表 | [DecodeImage,CTCLabelEncode,RecResizeImg,KeepKeys] | 见[ppocr/data/imaug](../../ppocr/data/imaug) | | **loader** | dataloader相关 | - | | | shuffle | 每个epoch是否将数据集顺序打乱 | True | \ | | batch_size_per_card | 训练时单卡batch size | 256 | \ | | drop_last | 是否丢弃因数据集样本数不能被 batch_size 整除而产生的最后一个不完整的mini-batch | True | \ | | num_workers | 用于加载数据的子进程个数,若为0即为不开启子进程,在主进程中进行数据加载 | 8 | \ | ## 3. 多语言配置文件生成 【参考识别模型训练补充内容】